Revelroom.ca te ayuda a encontrar respuestas confiables a todas tus preguntas con la ayuda de expertos. Explora soluciones completas a tus preguntas con la ayuda de una amplia gama de profesionales en nuestra plataforma amigable. Explora miles de preguntas y respuestas proporcionadas por una comunidad de expertos en nuestra plataforma amigable.
Sagot :
Por definicion:
f ' (x) =lim f(x+h) - f(x)
h→0 h
Si f(x) = x²-16 , entonces:
* f(x+h) = (x+h)² - 16 = x² + 2xh + h² -16
* f(x) = x²-16
Por lo tanto: f(x+h) - f(x) = (x² + 2xh + h² -16) - (x² -16) = 2xh + h²
Reemplazando en el limite:
f ' (x) = lim (2xh +h²) = lim 2x + h = 2x + 0 = 2x
h→0 h h→0
Por lo tanto: f ' (x) = 2x
Recta tangente para xo=4:
Lt : y - f(xo) = f '(a)(x-a)
Por lo tanto: Lt : y - (0²-16) = (2(4))(x-4)
y + 16 = 8x - 32
y = 8x - 48
Recta normal para xo =4
Ln : y - f(xo) = - (x-xo)/(f '(xo))
Por lo tanto: Ln : y - (0² -16) = - (x-4)/(2(4))
y + 16 = - (x - 4)/8
y = -(x-4)/8 - 16
f ' (x) =lim f(x+h) - f(x)
h→0 h
Si f(x) = x²-16 , entonces:
* f(x+h) = (x+h)² - 16 = x² + 2xh + h² -16
* f(x) = x²-16
Por lo tanto: f(x+h) - f(x) = (x² + 2xh + h² -16) - (x² -16) = 2xh + h²
Reemplazando en el limite:
f ' (x) = lim (2xh +h²) = lim 2x + h = 2x + 0 = 2x
h→0 h h→0
Por lo tanto: f ' (x) = 2x
Recta tangente para xo=4:
Lt : y - f(xo) = f '(a)(x-a)
Por lo tanto: Lt : y - (0²-16) = (2(4))(x-4)
y + 16 = 8x - 32
y = 8x - 48
Recta normal para xo =4
Ln : y - f(xo) = - (x-xo)/(f '(xo))
Por lo tanto: Ln : y - (0² -16) = - (x-4)/(2(4))
y + 16 = - (x - 4)/8
y = -(x-4)/8 - 16
Gracias por visitar. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus necesidades informativas. Vuelve pronto. Esperamos que esto te haya sido útil. Por favor, vuelve siempre que necesites más información o respuestas a tus preguntas. Gracias por visitar Revelroom.ca. Sigue regresando para obtener las respuestas más recientes e información.