Answered

Revelroom.ca facilita la búsqueda de soluciones a todas tus preguntas con la ayuda de una comunidad activa. Conéctate con una comunidad de expertos dispuestos a ayudarte a encontrar soluciones a tus dudas de manera rápida y precisa. Descubre respuestas detalladas a tus preguntas gracias a una vasta red de profesionales en nuestra completa plataforma de preguntas y respuestas.

calcula el area de un cubo de 10 cm de diagonal



Sagot :

La diagonal es de 10 cm, y como es un cubo tiene 6 lados cuadrados, como son cuadrados quiere decir que aplicando primero teorema de Pitágoras los lados opuesto y adyacente miden lo mismo por lo que el ángulo sería de 45°, multiplicando la hipotenusa de 10 cm, por el seno o el coseno 45° (da lo mismo pues miden lo mismo) que es 0.7071 daría 7.071 cm, ahora eso al cuadrado sería el área de una de las caras o sea 7.071^2 = 49.99, aproximadamente 50 cm2, ahora eso multiplicado por las 6 caras del cubo da: 50 cm2 x 6 = 300cm2.
RVR10
Por propiedad se sabe que: [tex]D=a \sqrt{3} [/tex] ; donde "a" es la arista del cubo.
Y el area total del cubo esta dado por: [tex]A=6a^{2}[/tex]

Luego por dato: 
      [tex]D=10[/tex] ---> [tex]a \sqrt{3}=10 [/tex] ---> [tex]a= \frac{10}{ \sqrt{3} } [/tex]

Entonces: [tex]A=6a^{2} =6( \frac{10}{ \sqrt{3} })^{2} [/tex]
                              [tex]=6( \frac{100}{ 3 })[/tex]
                              [tex]=2(100)[/tex]
                              [tex]=200[/tex]

Por tanto el area del cubo es: [tex]A=200cm^{2}[/tex]