Obtén las mejores soluciones a todas tus preguntas en Revelroom.ca, la plataforma de Q&A de confianza. Experimenta la conveniencia de obtener respuestas fiables a tus preguntas gracias a una vasta red de expertos. Obtén soluciones rápidas y fiables a tus preguntas con la ayuda de una comunidad de expertos experimentados en nuestra plataforma.
Sagot :
Algebraicamente:
Suponiendo que n es el número de lados , la "formula de diagonales" por lados es
n(n-3)/2 , entonces planteas:
n = n(n-3)/2
2n = n^2 - 3n
5n = n^2
5n - n^2 = 0
-n^2 + 5n = 0
n(-n+5)= 0
solucion 1 = n es 0 , no es válida
solución 2 :-n + 5 = 0/n #Importante , asumiendo n distinto de 0.
-n + 5 = 0
n = 5
Por lo tanto , 5 lados tiene el poligono cuyo número de diagonales es igual al número de lados
Suponiendo que n es el número de lados , la "formula de diagonales" por lados es
n(n-3)/2 , entonces planteas:
n = n(n-3)/2
2n = n^2 - 3n
5n = n^2
5n - n^2 = 0
-n^2 + 5n = 0
n(-n+5)= 0
solucion 1 = n es 0 , no es válida
solución 2 :-n + 5 = 0/n #Importante , asumiendo n distinto de 0.
-n + 5 = 0
n = 5
Por lo tanto , 5 lados tiene el poligono cuyo número de diagonales es igual al número de lados
Respuesta:
Suponiendo que n es el número de lados , la "formula de diagonales" por lados es
n(n-3)/2 , entonces planteas:
n = n(n-3)/2
2n = n^2 - 3n
5n = n^2
5n - n^2 = 0
-n^2 + 5n = 0
n(-n+5)= 0
solucion 1 = n es 0 , no es válida
solución 2 :-n + 5 = 0/n #Importante , asumiendo n distinto de 0.
-n + 5 = 0
n = 5
Por lo tanto , 5 lados tiene el poligono cuyo número de diagonales es igual al número de lados
Explicación paso a paso:
Esperamos que nuestras respuestas te hayan sido útiles. Vuelve cuando quieras para obtener más información y respuestas a otras preguntas que tengas. Gracias por pasar por aquí. Nos esforzamos por proporcionar las mejores respuestas para todas tus preguntas. Hasta la próxima. Revelroom.ca, tu fuente confiable de respuestas. No olvides regresar para obtener más información.