Bienvenido a Revelroom.ca, donde tus preguntas son respondidas por especialistas y miembros experimentados de la comunidad. Experimenta la conveniencia de obtener respuestas fiables a tus preguntas gracias a una vasta red de expertos. Descubre respuestas detalladas a tus preguntas gracias a una vasta red de profesionales en nuestra completa plataforma de preguntas y respuestas.
Sagot :
Factorización: Es convertir una expresión algebraica en el producto de sus factores
Estos son los Casos más comunes de Factorización explicados paso a paso y con un ejemplo
➀ Factorar un Monomio:
En este caso se buscan los factores en los que se puede descomponer el término
15ab = 3 * 5 a b
➁ Factor Común Monomio:
En este caso se busca algún factor que se repita en ambos términos
Como puedes ver la literal [ a ], esta en los 2 términos, por lo tanto, ese será tu factor común
a² + 2a = a ( a + 2 )
➂ Factor Común Polinomio: → x [ a + b ] + m [ a + b ]
En este caso en ambos términos el factor que se repite es [ a + b ], entonces lo puedes escribir como el factor del otro binomio
x [ a + b ] + m [ a + b ] = ( x + m ) ( a + b )
➃ Factor Común por Agrupación de Términos:
En este caso, tienes que ver que término tienen algo en común con otro término para agruparlo
ax + bx + ay + by =
[ax + bx] + [ay + by]
Después de agruparlo puedes aplicar el Caso 2, Factor Común Monomio
[ax + bx] + [ay + by] = x(a + b) + y(a + b)
Ahora aplicas el Caso 3, Factor Común Polinomio
x(a + b) + y(a + b) = (x + y) (a + b)
➄ Trinomio Cuadrado Perfecto a² ± 2ab + b² = (a + b)²
Se es trinomio cuadrado perfecto cuando cumple la siguiente regla:
☞El Cuadrado del 1er Termino ± 2 Veces el 1er Termino por el 2do + el Cuadrado del 2do Termino
Factorar: m² + 6m + 9
m² + 6m + 9
↓…………..↓
m..............3
➊ Sacamos la Raíz Cuadrada del 1er y 3er Término
[ m ] y [ 3 ]
➋ Las Raíces las acomodas dentro de una paréntesis, y las separas con el signo [ + ], este signo se toma del 2do termino del trinomio, y solo falta que al binomio, que se formo le agregues el exponente [ 2 ], con esto te queda un Binomio de la Suma de 2 Términos elevados al Cuadrado
(m + 3)²
Nota:
Si el 2do. Signo del Trinomio hubiera sido [ - ], tu Binomio hubiera quedado (m - 3)²
➌ Ahora aplica la Regla del TCP → (m + 3)²
El Cuadrado del 1er Termino = m²
[ + ] 2 Veces el 1er Termino por el 2do; [2m] [3] = 6m
[ + ] el Cuadrado del 2do Termino; [3]² = 9
➍ Junta los Términos
m² + 6m + 9; si es un TCP, ya que cumple la Regla
➅ Diferencia de Cuadrados : a² - b² = (a - b) (a + b)
De una diferencia de cuadrados obtendrás 2 binomios conjugados (mismos términos diferente signo)
a² - b² = (a - b) (a + b)
4a² - 9 = (2a - 3) (2a + 3)
➆ Caso Especial de Diferencia de Cuadrados Perfectos:
Factorar (a + b)² - c²
(a + b)² - c²
Nota: (a + b)² = (a + b) (a + b)
[(a + b) + c] [(a + b) - c]; quitamos paréntesis
(a + b + c) (a + b – c)
➇ Trinomio de la Forma; x² + bx + c
Factorar x² + 7x + 12
➊ Abrimos 2 paréntesis, con las raíces de [ x² ], que es el 1er termino del trinomio
(x.......) (x.......)
➋ Hay que buscar 2 números que sumados me den 7 y multiplicados me den 12
4 + 3 = 7
4 x 3 = 12
➌ Esos números son [ 4 ] y [ 3 ], ahora los acomodamos dentro de los paréntesis
(x + 4)(x + 3)
Esta será la Factorización: x² + 7x + 12 = (x + 4) (x + 3)
➈ Trinomio de la Forma; ax² + bx + c
Factorar 6x² - x – 2 = 0
Pasos:
➊ Vamos a multiplicar todos los términos del trinomio por el coeficiente de 1er , termino [ 6 ], en el 2do termino del trinomio, solo dejamos señalada la multiplicación
6x² - x – 2
36x² - [ 6 ] x – 12
➋ Abrimos 2 paréntesis, con las raíces de [ 36x² ], que es el 1er termino del trinomio equivalente
(6x.......) (6x.......)
➌ Basándonos en los coeficientes del 2do termino [ - 1 ] y en el 3er termino del trinomio [ - 12 ], vamos a buscar 2 numero que sumados me den [ - 1 ] y multiplicados [ - 12 ]
➍ Esos numero son [ - 4 y 3 ]
- 4 + 3 = - 1
[ - 4] [ 3 ] = - 12
➎ Ahora colocamos los números encontrados dentro de los paréntesis
(6x - 4) (6x - 3)
➏ Dividimos el resultado entre el numero que multiplicamos al trinomio, en el Paso ➊
(6x - 4) (6x - 3)
-------------------
: : : : : : 6
➐ Factorizamos los Binomios tomando a [2] y a [3], como termino común en cada binomio, de esta manera, podemos eliminar el [6], del denominador
2(3x - 2) 3(2x - 1)
----------------------
: : : : : : 6
6(3x - 2) (2x - 1)
---------------------- = (3x - 2) (2x - 1)
: : : : : : 6
Esta será la Factorización: 6x² - x – 2 = (2x+1) (3x-2)
➉ Suma o Diferencia de Cubos: a³ ± b³
Suma de Cubos: → a³ + b³ = (a + b) (a² - ab + b²)
Se resuelve de la siguiente manera
El binomio de la suma de las raíces de ambos términos (a + b)
El cuadrado del 1er termino, [ a² ]
[ - ] el producto de los 2 términos [ ab ]
[ + ] El cuadrado del 2do termino; [ b² ]
Diferencia de Cubos: → a³ - b³ = (a - b) (a² + ab + b²)
Se resuelve de la siguiente manera
El binomio de la resta de las raíces de ambos términos (a - b)
El cuadrado del 1er termino, [ a² ]
[ + ] el producto de los 2 términos [ ab ]
[ + ] el cuadrado del 2do termino; [ b² ]
Saludos
Estos son los Casos más comunes de Factorización explicados paso a paso y con un ejemplo
➀ Factorar un Monomio:
En este caso se buscan los factores en los que se puede descomponer el término
15ab = 3 * 5 a b
➁ Factor Común Monomio:
En este caso se busca algún factor que se repita en ambos términos
Como puedes ver la literal [ a ], esta en los 2 términos, por lo tanto, ese será tu factor común
a² + 2a = a ( a + 2 )
➂ Factor Común Polinomio: → x [ a + b ] + m [ a + b ]
En este caso en ambos términos el factor que se repite es [ a + b ], entonces lo puedes escribir como el factor del otro binomio
x [ a + b ] + m [ a + b ] = ( x + m ) ( a + b )
➃ Factor Común por Agrupación de Términos:
En este caso, tienes que ver que término tienen algo en común con otro término para agruparlo
ax + bx + ay + by =
[ax + bx] + [ay + by]
Después de agruparlo puedes aplicar el Caso 2, Factor Común Monomio
[ax + bx] + [ay + by] = x(a + b) + y(a + b)
Ahora aplicas el Caso 3, Factor Común Polinomio
x(a + b) + y(a + b) = (x + y) (a + b)
➄ Trinomio Cuadrado Perfecto a² ± 2ab + b² = (a + b)²
Se es trinomio cuadrado perfecto cuando cumple la siguiente regla:
☞El Cuadrado del 1er Termino ± 2 Veces el 1er Termino por el 2do + el Cuadrado del 2do Termino
Factorar: m² + 6m + 9
m² + 6m + 9
↓…………..↓
m..............3
➊ Sacamos la Raíz Cuadrada del 1er y 3er Término
[ m ] y [ 3 ]
➋ Las Raíces las acomodas dentro de una paréntesis, y las separas con el signo [ + ], este signo se toma del 2do termino del trinomio, y solo falta que al binomio, que se formo le agregues el exponente [ 2 ], con esto te queda un Binomio de la Suma de 2 Términos elevados al Cuadrado
(m + 3)²
Nota:
Si el 2do. Signo del Trinomio hubiera sido [ - ], tu Binomio hubiera quedado (m - 3)²
➌ Ahora aplica la Regla del TCP → (m + 3)²
El Cuadrado del 1er Termino = m²
[ + ] 2 Veces el 1er Termino por el 2do; [2m] [3] = 6m
[ + ] el Cuadrado del 2do Termino; [3]² = 9
➍ Junta los Términos
m² + 6m + 9; si es un TCP, ya que cumple la Regla
➅ Diferencia de Cuadrados : a² - b² = (a - b) (a + b)
De una diferencia de cuadrados obtendrás 2 binomios conjugados (mismos términos diferente signo)
a² - b² = (a - b) (a + b)
4a² - 9 = (2a - 3) (2a + 3)
➆ Caso Especial de Diferencia de Cuadrados Perfectos:
Factorar (a + b)² - c²
(a + b)² - c²
Nota: (a + b)² = (a + b) (a + b)
[(a + b) + c] [(a + b) - c]; quitamos paréntesis
(a + b + c) (a + b – c)
➇ Trinomio de la Forma; x² + bx + c
Factorar x² + 7x + 12
➊ Abrimos 2 paréntesis, con las raíces de [ x² ], que es el 1er termino del trinomio
(x.......) (x.......)
➋ Hay que buscar 2 números que sumados me den 7 y multiplicados me den 12
4 + 3 = 7
4 x 3 = 12
➌ Esos números son [ 4 ] y [ 3 ], ahora los acomodamos dentro de los paréntesis
(x + 4)(x + 3)
Esta será la Factorización: x² + 7x + 12 = (x + 4) (x + 3)
➈ Trinomio de la Forma; ax² + bx + c
Factorar 6x² - x – 2 = 0
Pasos:
➊ Vamos a multiplicar todos los términos del trinomio por el coeficiente de 1er , termino [ 6 ], en el 2do termino del trinomio, solo dejamos señalada la multiplicación
6x² - x – 2
36x² - [ 6 ] x – 12
➋ Abrimos 2 paréntesis, con las raíces de [ 36x² ], que es el 1er termino del trinomio equivalente
(6x.......) (6x.......)
➌ Basándonos en los coeficientes del 2do termino [ - 1 ] y en el 3er termino del trinomio [ - 12 ], vamos a buscar 2 numero que sumados me den [ - 1 ] y multiplicados [ - 12 ]
➍ Esos numero son [ - 4 y 3 ]
- 4 + 3 = - 1
[ - 4] [ 3 ] = - 12
➎ Ahora colocamos los números encontrados dentro de los paréntesis
(6x - 4) (6x - 3)
➏ Dividimos el resultado entre el numero que multiplicamos al trinomio, en el Paso ➊
(6x - 4) (6x - 3)
-------------------
: : : : : : 6
➐ Factorizamos los Binomios tomando a [2] y a [3], como termino común en cada binomio, de esta manera, podemos eliminar el [6], del denominador
2(3x - 2) 3(2x - 1)
----------------------
: : : : : : 6
6(3x - 2) (2x - 1)
---------------------- = (3x - 2) (2x - 1)
: : : : : : 6
Esta será la Factorización: 6x² - x – 2 = (2x+1) (3x-2)
➉ Suma o Diferencia de Cubos: a³ ± b³
Suma de Cubos: → a³ + b³ = (a + b) (a² - ab + b²)
Se resuelve de la siguiente manera
El binomio de la suma de las raíces de ambos términos (a + b)
El cuadrado del 1er termino, [ a² ]
[ - ] el producto de los 2 términos [ ab ]
[ + ] El cuadrado del 2do termino; [ b² ]
Diferencia de Cubos: → a³ - b³ = (a - b) (a² + ab + b²)
Se resuelve de la siguiente manera
El binomio de la resta de las raíces de ambos términos (a - b)
El cuadrado del 1er termino, [ a² ]
[ + ] el producto de los 2 términos [ ab ]
[ + ] el cuadrado del 2do termino; [ b² ]
Saludos
Gracias por utilizar nuestro servicio. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus preguntas. Visítanos nuevamente para obtener más información. Agradecemos tu tiempo. Por favor, vuelve cuando quieras para obtener la información más reciente y respuestas a tus preguntas. Visita Revelroom.ca para obtener nuevas y confiables respuestas de nuestros expertos.