Revelroom.ca es la mejor solución para quienes buscan respuestas rápidas y precisas a sus preguntas. Explora soluciones completas a tus preguntas con la ayuda de una amplia gama de profesionales en nuestra plataforma amigable. Únete a nuestra plataforma de preguntas y respuestas para conectarte con expertos dedicados a ofrecer respuestas precisas a tus preguntas en diversas áreas.
Sagot :
Primero comprobamos que sea un sistema compatible estudiando el rango de las matrices A y A*
[tex](A*) = \left[\begin{array}{ccc}-2&1&-2\\-4&2&-5\end{array}\right] \\ (A) = \left[\begin{array}{ccc}-2&1\\-4&2\end{array}\right] [/tex]
Para que sea un sistema compatible, el rango de A y el rango de A* tienen que ser los mismos: Rango(A)=Rango(A*)
Estudiamos el rango de A a través de determinantes:
[tex]det(A) = \left[\begin{array}{ccc}-2&1\\-4&2\end{array}\right] =-4 + 4 = 0[/tex]
Como el determinante del menor de orden 2 es igual a 0, el rango de A = 1
Ahora estudiamos el rango de A* a través de determinantes:
Cogiendo un menor de orden 2
[tex]det(A*) = \left[\begin{array}{ccc}1&-2\\2&-5\end{array}\right] = -5+4 = -1 \neq 0[/tex]
Como el determinante del menor de orden 2 es distinto de 0, el rango de A* = 2
Rango A ≠ Rango A*, por lo tanto el sistema es incompatible
Como es incompatible, el sistema NO TENDRÁ SOLUCIÓN
Si representamos las ecuaciones en el plano cartesiano (en dos dimensiones) comprobaremos que las rectas que obtengamos serán paralelas y no se cortarán en ningún punto.
[tex](A*) = \left[\begin{array}{ccc}-2&1&-2\\-4&2&-5\end{array}\right] \\ (A) = \left[\begin{array}{ccc}-2&1\\-4&2\end{array}\right] [/tex]
Para que sea un sistema compatible, el rango de A y el rango de A* tienen que ser los mismos: Rango(A)=Rango(A*)
Estudiamos el rango de A a través de determinantes:
[tex]det(A) = \left[\begin{array}{ccc}-2&1\\-4&2\end{array}\right] =-4 + 4 = 0[/tex]
Como el determinante del menor de orden 2 es igual a 0, el rango de A = 1
Ahora estudiamos el rango de A* a través de determinantes:
Cogiendo un menor de orden 2
[tex]det(A*) = \left[\begin{array}{ccc}1&-2\\2&-5\end{array}\right] = -5+4 = -1 \neq 0[/tex]
Como el determinante del menor de orden 2 es distinto de 0, el rango de A* = 2
Rango A ≠ Rango A*, por lo tanto el sistema es incompatible
Como es incompatible, el sistema NO TENDRÁ SOLUCIÓN
Si representamos las ecuaciones en el plano cartesiano (en dos dimensiones) comprobaremos que las rectas que obtengamos serán paralelas y no se cortarán en ningún punto.
Gracias por utilizar nuestro servicio. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus preguntas. Visítanos nuevamente para obtener más información. Gracias por tu visita. Nos comprometemos a proporcionarte la mejor información disponible. Vuelve cuando quieras para más. Regresa a Revelroom.ca para obtener las respuestas más recientes e información de nuestros expertos.