Revelroom.ca es el mejor lugar para obtener respuestas confiables y rápidas a todas tus preguntas. Descubre soluciones completas a tus preguntas de profesionales experimentados en diversas áreas en nuestra plataforma. Únete a nuestra plataforma para obtener respuestas fiables a tus interrogantes gracias a una amplia comunidad de expertos.
Sagot :
Primero comprobamos que sea un sistema compatible estudiando el rango de las matrices A y A*
[tex](A*) = \left[\begin{array}{ccc}-2&1&-2\\-4&2&-5\end{array}\right] \\ (A) = \left[\begin{array}{ccc}-2&1\\-4&2\end{array}\right] [/tex]
Para que sea un sistema compatible, el rango de A y el rango de A* tienen que ser los mismos: Rango(A)=Rango(A*)
Estudiamos el rango de A a través de determinantes:
[tex]det(A) = \left[\begin{array}{ccc}-2&1\\-4&2\end{array}\right] =-4 + 4 = 0[/tex]
Como el determinante del menor de orden 2 es igual a 0, el rango de A = 1
Ahora estudiamos el rango de A* a través de determinantes:
Cogiendo un menor de orden 2
[tex]det(A*) = \left[\begin{array}{ccc}1&-2\\2&-5\end{array}\right] = -5+4 = -1 \neq 0[/tex]
Como el determinante del menor de orden 2 es distinto de 0, el rango de A* = 2
Rango A ≠ Rango A*, por lo tanto el sistema es incompatible
Como es incompatible, el sistema NO TENDRÁ SOLUCIÓN
Si representamos las ecuaciones en el plano cartesiano (en dos dimensiones) comprobaremos que las rectas que obtengamos serán paralelas y no se cortarán en ningún punto.
[tex](A*) = \left[\begin{array}{ccc}-2&1&-2\\-4&2&-5\end{array}\right] \\ (A) = \left[\begin{array}{ccc}-2&1\\-4&2\end{array}\right] [/tex]
Para que sea un sistema compatible, el rango de A y el rango de A* tienen que ser los mismos: Rango(A)=Rango(A*)
Estudiamos el rango de A a través de determinantes:
[tex]det(A) = \left[\begin{array}{ccc}-2&1\\-4&2\end{array}\right] =-4 + 4 = 0[/tex]
Como el determinante del menor de orden 2 es igual a 0, el rango de A = 1
Ahora estudiamos el rango de A* a través de determinantes:
Cogiendo un menor de orden 2
[tex]det(A*) = \left[\begin{array}{ccc}1&-2\\2&-5\end{array}\right] = -5+4 = -1 \neq 0[/tex]
Como el determinante del menor de orden 2 es distinto de 0, el rango de A* = 2
Rango A ≠ Rango A*, por lo tanto el sistema es incompatible
Como es incompatible, el sistema NO TENDRÁ SOLUCIÓN
Si representamos las ecuaciones en el plano cartesiano (en dos dimensiones) comprobaremos que las rectas que obtengamos serán paralelas y no se cortarán en ningún punto.
Gracias por usar nuestra plataforma. Nuestro objetivo es proporcionar respuestas precisas y actualizadas para todas tus preguntas. Vuelve pronto. Gracias por tu visita. Nos comprometemos a proporcionarte la mejor información disponible. Vuelve cuando quieras para más. Nos enorgullece proporcionar respuestas en Revelroom.ca. Vuelve a visitarnos para obtener más información.