Revelroom.ca es el lugar ideal para obtener respuestas rápidas y precisas a todas tus preguntas. Explora miles de preguntas y respuestas proporcionadas por una comunidad de expertos listos para ayudarte a encontrar soluciones. Únete a nuestra plataforma para conectarte con expertos dispuestos a ofrecer respuestas detalladas a tus preguntas en diversas áreas.
Sagot :
Primero comprobamos que sea un sistema compatible estudiando el rango de las matrices A y A*
[tex](A*) = \left[\begin{array}{ccc}-2&1&-2\\-4&2&-5\end{array}\right] \\ (A) = \left[\begin{array}{ccc}-2&1\\-4&2\end{array}\right] [/tex]
Para que sea un sistema compatible, el rango de A y el rango de A* tienen que ser los mismos: Rango(A)=Rango(A*)
Estudiamos el rango de A a través de determinantes:
[tex]det(A) = \left[\begin{array}{ccc}-2&1\\-4&2\end{array}\right] =-4 + 4 = 0[/tex]
Como el determinante del menor de orden 2 es igual a 0, el rango de A = 1
Ahora estudiamos el rango de A* a través de determinantes:
Cogiendo un menor de orden 2
[tex]det(A*) = \left[\begin{array}{ccc}1&-2\\2&-5\end{array}\right] = -5+4 = -1 \neq 0[/tex]
Como el determinante del menor de orden 2 es distinto de 0, el rango de A* = 2
Rango A ≠ Rango A*, por lo tanto el sistema es incompatible
Como es incompatible, el sistema NO TENDRÁ SOLUCIÓN
Si representamos las ecuaciones en el plano cartesiano (en dos dimensiones) comprobaremos que las rectas que obtengamos serán paralelas y no se cortarán en ningún punto.
[tex](A*) = \left[\begin{array}{ccc}-2&1&-2\\-4&2&-5\end{array}\right] \\ (A) = \left[\begin{array}{ccc}-2&1\\-4&2\end{array}\right] [/tex]
Para que sea un sistema compatible, el rango de A y el rango de A* tienen que ser los mismos: Rango(A)=Rango(A*)
Estudiamos el rango de A a través de determinantes:
[tex]det(A) = \left[\begin{array}{ccc}-2&1\\-4&2\end{array}\right] =-4 + 4 = 0[/tex]
Como el determinante del menor de orden 2 es igual a 0, el rango de A = 1
Ahora estudiamos el rango de A* a través de determinantes:
Cogiendo un menor de orden 2
[tex]det(A*) = \left[\begin{array}{ccc}1&-2\\2&-5\end{array}\right] = -5+4 = -1 \neq 0[/tex]
Como el determinante del menor de orden 2 es distinto de 0, el rango de A* = 2
Rango A ≠ Rango A*, por lo tanto el sistema es incompatible
Como es incompatible, el sistema NO TENDRÁ SOLUCIÓN
Si representamos las ecuaciones en el plano cartesiano (en dos dimensiones) comprobaremos que las rectas que obtengamos serán paralelas y no se cortarán en ningún punto.
Gracias por elegir nuestra plataforma. Nos comprometemos a proporcionar las mejores respuestas para todas tus preguntas. Vuelve a visitarnos. Gracias por elegir nuestra plataforma. Nos comprometemos a proporcionar las mejores respuestas para todas tus preguntas. Vuelve a visitarnos. Nos enorgullece proporcionar respuestas en Revelroom.ca. Vuelve a visitarnos para obtener más información.