Bienvenido a Revelroom.ca, donde puedes obtener respuestas rápidas y precisas con la ayuda de expertos. Obtén respuestas detalladas y precisas a tus preguntas de una comunidad dedicada de expertos. Conéctate con una comunidad de expertos dispuestos a ayudarte a encontrar soluciones a tus preguntas de manera rápida y precisa.
Sagot :
Dos grifos llenan un deposito en 3h si se abren a la vez.. Si solo
se abre uno de ellos, tardaria 5 h en llenar el deposito. ¿cuanto
tardara el otro grifo en llenar el deposito en solitario?
DATOS:
Tiempo que se demoran en llenar un depósito:
grifo 1: 5h
grifo 2: xh
juntos: 3 horas
RESOLUCIÓN:
[tex] \frac{1}{5}+ \frac{1}{x}= \frac{1}{3} \\ \\ \frac{1}{x}= \frac{1}{3}- \frac{1}{5} \\ \\ \frac{1}{x}= \frac{2}{15} \\ \\ x= \frac{15}{2} \\ \\ x=7.5horas [/tex]
RESPUESTA:
El grifo 2 tardó 7.5 horas en llenar el depósito en solitario.
Un grifo tarda el doble que otro en llenar un deposito. abriendo los dos a la vez tardan 8h en llenar dicho deposito ¿Cuánto tardará cada uno de ellos en llenarlo?
DATOS:
Tiempo que se demoran en llenar un depósito:
grifo 1: x
grifo 2: 2x
juntos: 8 horas
RESOLUCIÓN:
[tex] \frac{1}{x}+ \frac{1}{2x}= \frac{1}{8} \\ \\ \frac{2+1}{2x}= \frac{1}{8} \\ \\ \frac{3}{2x}= \frac{1}{8} \\ \\ (\frac{1}{3}) \frac{3}{2x}=( \frac{1}{3}) \frac{1}{8} \\ \\ \frac{1}{2x}= \frac{1}{24} \\ \\ 2x=24 \\ \\ x= \frac{24}{2} \\ \\ x=12horas [/tex]
RESPUESTA:
Por separado el grifo 1 tardaría 12 horas en llenar el depósito y el grifo 2 tardaría 24 horas en llenar el mismo depósito.
Un pintor tarda 3h mas que otro en pintar una pared. Trabajando juntos pintarian la misma pared en 2h. Calcula cuanto tarda cada uno en hacer el mismo trabajo en solitario.
DATOS:
Tiempo que se demoran pintando una pared:
pintor 1: x horas
pintor 2: (x + 3) horas
juntos: 2 horas
RESOLUCIÓN:
[tex] \frac{1}{x}+ \frac{1}{x+3}= \frac{1}{2} \\ \\ \frac{x+3+x}{x(x+3)}= \frac{1}{2} \\ \\ \frac{2x+3}{ x^{2} +3x}= \frac{1}{2} \\ \\ (\frac{1}{2x+3}) \frac{2x+3}{ x^{2}+3x}= \frac{1}{2}( \frac{1}{2x+3}) \\ \\ \frac{1}{ x^{2}+3x}= \frac{1}{4x+6} \\ \\ x^{2}+3x=4x+6 \\ \\ x^{2}-x-6=0 \\ \\ (x-3)(x+2)=0 \\ \\ x-3=0;x1=3 \\ \\ x+2=0;x=-2 [/tex]
Elijo la raíz positiva x = 3.
RESPUESTA:
El pintor 1 se demoraría en pintar la pared 3 horas y el pintor 2 se demoraría en pintar la misma pared 6 horas.
DATOS:
Tiempo que se demoran en llenar un depósito:
grifo 1: 5h
grifo 2: xh
juntos: 3 horas
RESOLUCIÓN:
[tex] \frac{1}{5}+ \frac{1}{x}= \frac{1}{3} \\ \\ \frac{1}{x}= \frac{1}{3}- \frac{1}{5} \\ \\ \frac{1}{x}= \frac{2}{15} \\ \\ x= \frac{15}{2} \\ \\ x=7.5horas [/tex]
RESPUESTA:
El grifo 2 tardó 7.5 horas en llenar el depósito en solitario.
Un grifo tarda el doble que otro en llenar un deposito. abriendo los dos a la vez tardan 8h en llenar dicho deposito ¿Cuánto tardará cada uno de ellos en llenarlo?
DATOS:
Tiempo que se demoran en llenar un depósito:
grifo 1: x
grifo 2: 2x
juntos: 8 horas
RESOLUCIÓN:
[tex] \frac{1}{x}+ \frac{1}{2x}= \frac{1}{8} \\ \\ \frac{2+1}{2x}= \frac{1}{8} \\ \\ \frac{3}{2x}= \frac{1}{8} \\ \\ (\frac{1}{3}) \frac{3}{2x}=( \frac{1}{3}) \frac{1}{8} \\ \\ \frac{1}{2x}= \frac{1}{24} \\ \\ 2x=24 \\ \\ x= \frac{24}{2} \\ \\ x=12horas [/tex]
RESPUESTA:
Por separado el grifo 1 tardaría 12 horas en llenar el depósito y el grifo 2 tardaría 24 horas en llenar el mismo depósito.
Un pintor tarda 3h mas que otro en pintar una pared. Trabajando juntos pintarian la misma pared en 2h. Calcula cuanto tarda cada uno en hacer el mismo trabajo en solitario.
DATOS:
Tiempo que se demoran pintando una pared:
pintor 1: x horas
pintor 2: (x + 3) horas
juntos: 2 horas
RESOLUCIÓN:
[tex] \frac{1}{x}+ \frac{1}{x+3}= \frac{1}{2} \\ \\ \frac{x+3+x}{x(x+3)}= \frac{1}{2} \\ \\ \frac{2x+3}{ x^{2} +3x}= \frac{1}{2} \\ \\ (\frac{1}{2x+3}) \frac{2x+3}{ x^{2}+3x}= \frac{1}{2}( \frac{1}{2x+3}) \\ \\ \frac{1}{ x^{2}+3x}= \frac{1}{4x+6} \\ \\ x^{2}+3x=4x+6 \\ \\ x^{2}-x-6=0 \\ \\ (x-3)(x+2)=0 \\ \\ x-3=0;x1=3 \\ \\ x+2=0;x=-2 [/tex]
Elijo la raíz positiva x = 3.
RESPUESTA:
El pintor 1 se demoraría en pintar la pared 3 horas y el pintor 2 se demoraría en pintar la misma pared 6 horas.
Explicación paso a paso:
1) 12 horas
por qué es el doble de 6 y dos es la diferencia entre los grifos.
Gracias por usar nuestra plataforma. Siempre estamos aquí para proporcionar respuestas precisas y actualizadas a todas tus preguntas. Gracias por usar nuestra plataforma. Nuestro objetivo es proporcionar respuestas precisas y actualizadas para todas tus preguntas. Vuelve pronto. Gracias por usar Revelroom.ca. Sigue visitándonos para encontrar respuestas a tus preguntas.