Revelroom.ca es la mejor solución para quienes buscan respuestas rápidas y precisas a sus preguntas. Obtén respuestas inmediatas y fiables a tus preguntas de una comunidad de expertos experimentados en nuestra plataforma. Nuestra plataforma ofrece una experiencia continua para encontrar respuestas fiables de una red de profesionales experimentados.

sobre las derivadas como se saca el y=arc sen arc cos arc tan me pueden explicar

Sagot :

Derivadas
Reglas de derivaci¶on
Suma
d
dx
[f(x) + g(x)] = f
0
(x) + g
0
(x)
d
dx
[kf(x)] = kf
0
(x)
Producto
d
dx
[f(x)g(x)] = f
0
(x)g(x) + f(x)g
0
(x)
Cociente
d
dx
·
f(x)
g(x)
¸
=
f
0
(x)g(x) ¡ f(x)g
0
(x)
g(x)
2
d
dx
ff[g(x)]g = f
0
[g(x)]g
0
(x)
Regla de la cadena
d
dx
ff(g[h(x)])g = f
0
(g[h(x)])g
0
[h(x)]h
0
(x)
d
dx
(k) = 0
d
dx
(x
k
) = kx
k¡1
d
dx
[f(x)
k
] = kf(x)
k¡1
f
0
(x)
Potencia
d
dx
(
p
x) =
d
dx
(x
1=2
) =
1
2
p
x
d
dx
[
p
f(x)] =
f
0
(x)
2
p
f(x)
d
dx
µ
1
x

=
d
dx
(x
¡1
) = ¡
1
x
2
d
dx
·
1
f(x)
¸
= ¡
f
0
(x)
f(x)
22
Reglas de derivaci¶on (continuaci¶on)
d
dx
(sin x) = cos x
d
dx
[sin f(x)] = cos f(x)f
0
(x)
Trigonom¶etricas
d
dx
(cos x) = ¡ sin x
d
dx
[cos f(x)] = ¡ sin f(x)f
0
(x)
d
dx
(tan x) = 1 + tan
2
x
d
dx
[tan f(x)] = [1 + tan
2
f(x)]f
0
(x)
d
dx
(arcsin x) =
1
p
1 ¡ x
2
d
dx
[arcsin f(x)] =
f
0
(x)
p
1 ¡ f(x)
2
Funciones de arco
d
dx
(arc cos x) =
¡1
p
1 ¡ x
2
d
dx
[arc cos f(x)] =
¡f
0
(x)
p
1 ¡ f(x)
2
d
dx
(arctan x) =
1
1 + x
2
d
dx
[arctan f(x)] =
f
0
(x)
1 + f(x)
2
d
dx
(e
x
) = e
x
d
dx
(e
f(x)
) = e
f(x)
f
0
(x)
Exponenciales
d
dx
(a
x
) = a
x
ln a
d
dx
(a
f(x)
) = a
f(x)
ln af
0
(x)
d
dx
(ln x) =
1
x
d
dx
(ln f(x)) =
f
0
(x)
f(x)
Logar¶³tmicas
d
dx
(lga x) =
1
x
1
ln a
d
dx
(lga f(x)) =
f
0
(x)
f(x)
1
ln a3
Ejercicios de derivadas
1. Determinar las tangentes de los ¶angulos que forman con el eje positivo de las x las l¶³neas
tangentes a la curva y = x
3
cuando x = 1=2 y x = ¡1, construir la gr¶a¯ca y representar
las l¶³neas tangentes.
Soluci¶on.- a) 3/4, b) 3.
2. Determinar las tangentes de los ¶angulos que forman con el eje positivo de las x las l¶³neas
tangentes a la curva y = 1=x cuando x = 1=2 y x = 1, construir la gr¶a¯ca y representar
las l¶³neas tangentes.
Soluci¶on.- a) -4, b) -1.
3. Hallar la derivada de la funci¶on y = x
4 + 3x
2 ¡ 6.
Soluci¶on.- y
0 = 4x
3 + 6x.
4. Hallar la derivada de la funci¶on y = 6x
3 ¡ x
2
.
Soluci¶on.- y
0 = 18x
2 ¡ 2x.
5. Hallar la derivada de la funci¶on y =
x
5
a+b ¡
x
2
a¡b
:
Soluci¶on.- y
0 =
5x
4
a+b ¡
2x
a¡b
.
6. Hallar la derivada de la funci¶on y =
x
3¡x
2+1
5
.
Soluci¶on.- y
0 =
3x
2¡2x
5
.
7. Hallar la derivada de la funci¶on y = 2ax
3 ¡
x
2
b + c.
Soluci¶on.- y
0 = 6ax
2 ¡
2x
b
.
8. Hallar la derivada de la funci¶on y = 6x
7
2 + 4x
5
2 + 2x.
Soluci¶on.- y
0 = 21x
5
2 + 10x
3
2 + 2.
9. Hallar la derivada de la funci¶on y =
p
3x +
p3
x +
1
x
.
Soluci¶on.- y
0 =
p
3
2
p
x +
1
3
p3
x2 ¡
1
x2 .
10. Hallar la derivada de la funci¶on y =
(x+1)
3
x
3
2
.
Soluci¶on.- y
0 =
3(x+1)
2
(x¡1)
2x
5
2
.
11. Hallar la derivada de la funci¶on y =
p3
x
2 ¡ 2
p
x + 5.
Soluci¶on.- y
0 =
2
3
1p3
x ¡ p1
x
.
12. Hallar la derivada de la funci¶on y =
ax
2
p3
x +
b
x
p
x ¡
p3
x
p
x
.
Soluci¶on.- y
0 =
5
3
ax
2
3 ¡
3
2
bx
¡5
2 +
1
6
x
¡7
6 .
13. Hallar la derivada de la funci¶on y = (1 + 4x
3
)(1 + 2x
2
).
Soluci¶on.- y
0 = 4x(1 + 3x + 10x
3
).
14. Hallar la derivada de la funci¶on y = x(2x ¡ 1)(3x + 2).
Soluci¶on.- y
0 = 2(9x
2 + x ¡ 1).4
15. Hallar la derivada de la funci¶on y = (2x ¡ 1)(x
2 ¡ 6x + 3).
Soluci¶on.- y
0 = 6x
2 ¡ 26x + 12.
16. Hallar la derivada de la funci¶on y =
2x
4
b
2¡x2 .
Soluci¶on.- y
0 =
4x
3
(2b
2¡x
2
)
(b
2¡x2
)
2 .
17. Hallar la derivada de la funci¶on y =
a¡x
a+x
.
Soluci¶on.- y
0 = ¡
2a
(a+x)
2 .
18. Hallar la derivada de la funci¶on f(t) =
t
3
1+t
2 .
Soluci¶on.- f
0
(t) =
t
2
(3+t
2
(1+t
2
)
2 .
19. Hallar la derivada de la funci¶on f(s) =
(s+4)
2
s+3
.
Soluci¶on.- f
0
(s) =
(s+2)(s+4)
(s+3)
2 .
20. Hallar la derivada de la funci¶on y =
x
3+1
x2¡x¡2
.
Soluci¶on.- y
0 =
x
4¡2x
3¡6x
2¡2x+1
(x2¡x¡2)
2 .
21. Hallar la derivada de la funci¶on y = (2x
2 ¡ 3)
2
.
Soluci¶on.- y
0 = 8x(2x
2 ¡ 3).
22. Hallar la derivada de la funci¶on y = (x
2 + a
2
)
5
.
Soluci¶on.- y
0 = 10x(x
2 + a
2
)
4
.
23. Hallar la derivada de la funci¶on y =
p
x
2 + a
2
.
Soluci¶on.- y
0 = p x
x2+a2
.
24. Hallar la derivada de la funci¶on y = (a + x)
p
a ¡ x.
Soluci¶on.- y
0 =
a¡3x
2
p
a¡x
.
25. Hallar la derivada de la funci¶on y =
q
1+x
1¡x
.