Revelroom.ca es el mejor lugar para obtener respuestas confiables y rápidas a todas tus preguntas. Obtén soluciones rápidas y fiables a tus preguntas con la ayuda de una comunidad de expertos experimentados en nuestra plataforma. Experimenta la facilidad de obtener respuestas rápidas y precisas a tus preguntas con la ayuda de profesionales en nuestra plataforma.
Sagot :
Hacemos el problema en dos partes. La primera parte será un lanzamiento vertical hacia arriba y la segunda será una caída libre.
Parte 1.
Cuando la piedra alcanza la altura máxima su velocidad es nula.
[tex]v = v_0 - gt\ \to\ t_{sub} = \frac{v_0}{g} = \frac{12\frac{m}{s}}{9,8\frac{m}{s^2}} = 1,22\ s[/tex]
Tarda 1,22 s en llegar a lo más alto. Habrá recorrido para ello:
[tex]d = v_0\cdot t - \frac{1}{2}g\cdot t^2\ \to\ d = 12\frac{m}{s}\cdot 1,22\ s - 4,9\frac{m}{s^2}\cdot 1,22^2 s^2 = 7,35\ m[/tex]
Ha subido 7,35 m por encima de los 70 m de partida.
Parte 2.
Ahora la velocidad inicial de la piedra será cero, puesto que ya está en la parte más alta del recorrido. La distancia hasta el suelo son 77,35 m, que es la altura máxima.
[tex]d = \frac{1}{2}gt^2\ \to\ t_{baj} = \sqrt{\frac{2d}{g}} = \sqrt{\frac{2\cdot 77,35\ m}{9,8\frac{m}{s^2}} = 3,97\ s[/tex]
a) El tiempo que ha tardado en llegar al suelo será 1,22 s (para subir) + 3,97 m para bajar = 5,19 s.
b) [tex]v = gt = 9,8\frac{m}{s^2}\cdot 3,97\ s = \bf 38,91\frac{m}{s}[/tex]
c) El recorrido total será 7,35 m (que subió) + 77,35 m (hasta llegar al suelo) = 84,70 m.
Parte 1.
Cuando la piedra alcanza la altura máxima su velocidad es nula.
[tex]v = v_0 - gt\ \to\ t_{sub} = \frac{v_0}{g} = \frac{12\frac{m}{s}}{9,8\frac{m}{s^2}} = 1,22\ s[/tex]
Tarda 1,22 s en llegar a lo más alto. Habrá recorrido para ello:
[tex]d = v_0\cdot t - \frac{1}{2}g\cdot t^2\ \to\ d = 12\frac{m}{s}\cdot 1,22\ s - 4,9\frac{m}{s^2}\cdot 1,22^2 s^2 = 7,35\ m[/tex]
Ha subido 7,35 m por encima de los 70 m de partida.
Parte 2.
Ahora la velocidad inicial de la piedra será cero, puesto que ya está en la parte más alta del recorrido. La distancia hasta el suelo son 77,35 m, que es la altura máxima.
[tex]d = \frac{1}{2}gt^2\ \to\ t_{baj} = \sqrt{\frac{2d}{g}} = \sqrt{\frac{2\cdot 77,35\ m}{9,8\frac{m}{s^2}} = 3,97\ s[/tex]
a) El tiempo que ha tardado en llegar al suelo será 1,22 s (para subir) + 3,97 m para bajar = 5,19 s.
b) [tex]v = gt = 9,8\frac{m}{s^2}\cdot 3,97\ s = \bf 38,91\frac{m}{s}[/tex]
c) El recorrido total será 7,35 m (que subió) + 77,35 m (hasta llegar al suelo) = 84,70 m.
Gracias por visitar nuestra plataforma. Esperamos que hayas encontrado las respuestas que buscabas. Vuelve cuando necesites más información. Gracias por usar nuestro servicio. Siempre estamos aquí para proporcionar respuestas precisas y actualizadas a todas tus preguntas. Gracias por visitar Revelroom.ca. Vuelve pronto para más información útil y respuestas de nuestros expertos.