Bienvenido a Revelroom.ca, donde tus preguntas son respondidas por especialistas y miembros experimentados de la comunidad. Obtén respuestas detalladas a tus preguntas de una comunidad dedicada de expertos en nuestra plataforma. Experimenta la facilidad de obtener respuestas rápidas y precisas a tus preguntas con la ayuda de profesionales en nuestra plataforma.
Sagot :
sea [tex]y=e^{u}[/tex]
derivada:
[tex]y`=e^{u}*u`[/tex]
en este caso u=-x
por tanto [tex]u`=-1[/tex]
sustituyendo u y u`: [tex]y`=e^{-x}*-1=-e^{-x}[/tex]
derivada:
[tex]y`=e^{u}*u`[/tex]
en este caso u=-x
por tanto [tex]u`=-1[/tex]
sustituyendo u y u`: [tex]y`=e^{-x}*-1=-e^{-x}[/tex]
La derivada de f(x) = e⁻ˣ viene siendo f'(x) = -e⁻ˣ.
EXPLICACIÓN:
Para derivar ya existen definidas unas ciertas de leyes y tablas, por tanto aplicaremos estas mismas para obtener el valor.
Según las tablas de funciones, tenemos lo siguiente:
y = e⁻ˣ
Entonces la derivada será:
y' = (e⁻ˣ)'
y' = e⁻ˣ· (-x)'
y' = e⁻ˣ ·(-1)
y' = -e⁻ˣ
Ahora, comprobemos esto con la definición de derivada.
y' = Lim(n→0) [f(x+n) - f(x)]/n
Sabemos que f(x) = e⁻ˣ por tanto f(x+n) = e⁻⁽ˣ⁺ⁿ⁾. Aplicamos el limite y tenemos:
y' = Lim(n→0) [e⁻⁽ˣ⁺ⁿ⁾ - e⁻ˣ]/n
y' = Lim(n→0) [e⁻ˣ·e⁻ⁿ - e⁻ˣ]/n
y' = Lim(n→0) (e⁻ˣ)·[e⁻ⁿ - 1]/n
Aquí hay que saber teoría de limites, por definición se tiene que:
Lim(x→0) (e⁻ˣ - 1)/ x = -1 → Limite especial
Sustituimos el limite especial y tenemos que:
y ' = (e⁻ˣ)·(-1)
y' = -(e⁻ˣ)
Quedando demostrado que la derivadas son correctas.
NOTA: la demostración no es necesaria, ya que la tabla da las derivadas directas, pero se deja como comentario extra.
Mira otro ejemplo de derivada en este enlace brainly.lat/tarea/10942898.
Gracias por visitar nuestra plataforma. Esperamos que hayas encontrado las respuestas que buscabas. Vuelve cuando necesites más información. Gracias por visitar. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus necesidades informativas. Vuelve pronto. Gracias por usar Revelroom.ca. Vuelve para obtener más conocimientos de nuestros expertos.