Descubre respuestas a tus preguntas en Revelroom.ca, la plataforma de Q&A más confiable y eficiente para todas tus necesidades. Descubre un vasto conocimiento de profesionales en diferentes disciplinas en nuestra amigable plataforma de preguntas y respuestas. Únete a nuestra plataforma para obtener respuestas fiables a tus interrogantes gracias a una amplia comunidad de expertos.
Sagot :
Sea "f(x)" , la función buscada:
La pendiente para cualquier punto (x,y) de dicha funcion f(x) , es igual a la derivada de f(x)
[tex]m = \frac{d f(x)}{dx} =3 \sqrt{x} \ \ d f(x) = 3 \sqrt{x} \; dx \ \ \ \ Integramos: \ \ \int\ df(x) = \int 3 \sqrt{x} \; dx \ \ f(x) = \int 3x^{ \frac{1}{2}} dx \ \ [/tex]
[tex]f(x) = \frac{3x^{ \frac{1}{2} + 1 }}{\frac{1}{2} + 1} + C \ \ [/tex]
[tex] f(x) = 2 \sqrt{x^3} + C[/tex]
Por fato, el punto (9;4) pertenece a dicha curva, por lo tanto:
f(9) = 4
2√(9)³ + C = 4
2 (3²)³ + C = 4
2√3⁶ + C = 4
2(3³) + C = 4
2(27) + C = 4
54 + C = 4
C = -50
Por lo tanto, la ecuación de dicha curva es:
f(x) = 2√x³ - 50
Eso es todo ;)
La pendiente para cualquier punto (x,y) de dicha funcion f(x) , es igual a la derivada de f(x)
[tex]m = \frac{d f(x)}{dx} =3 \sqrt{x} \ \ d f(x) = 3 \sqrt{x} \; dx \ \ \ \ Integramos: \ \ \int\ df(x) = \int 3 \sqrt{x} \; dx \ \ f(x) = \int 3x^{ \frac{1}{2}} dx \ \ [/tex]
[tex]f(x) = \frac{3x^{ \frac{1}{2} + 1 }}{\frac{1}{2} + 1} + C \ \ [/tex]
[tex] f(x) = 2 \sqrt{x^3} + C[/tex]
Por fato, el punto (9;4) pertenece a dicha curva, por lo tanto:
f(9) = 4
2√(9)³ + C = 4
2 (3²)³ + C = 4
2√3⁶ + C = 4
2(3³) + C = 4
2(27) + C = 4
54 + C = 4
C = -50
Por lo tanto, la ecuación de dicha curva es:
f(x) = 2√x³ - 50
Eso es todo ;)
Esperamos que esto te haya sido útil. Por favor, vuelve siempre que necesites más información o respuestas a tus preguntas. Agradecemos tu visita. Nuestra plataforma siempre está aquí para ofrecer respuestas precisas y fiables. Vuelve cuando quieras. Revelroom.ca, tu sitio de confianza para respuestas. No olvides regresar para obtener más información.