Descubre respuestas a tus preguntas en Revelroom.ca, la plataforma de Q&A más confiable y eficiente para todas tus necesidades. Explora soluciones completas a tus preguntas con la ayuda de una amplia gama de profesionales en nuestra plataforma amigable. Obtén respuestas inmediatas y fiables a tus preguntas de una comunidad de expertos experimentados en nuestra plataforma.
Sagot :
Como el alumno elegido tiene una A sólo consideraremos la población de alumnos con A
El número total de casos es el de alumnos con calificación A en los tres cursos: N[A]=3+10+5=18
El número de casos favorables es el de alumnos con A que son de último curso: N[AyU]=10
Luego probabilidad de que un alumno con A sea de U, es P=N[UyA]/N[A]=10/18=5/9
----
Nota: P es la probabilidad condicional de pertenecer al último curso, siendo la condición tener calificación A, cuya fórmula general es
P[U/A]=P[AyU] / P[A] siendo P[AyU] la probabilidad de elegir un alumno de U con A ( N[UyA]//N), P[A] la probabilidad de elegir un alumno cualquiera con A ( N[A]/N ) y siendo N es el número total de alumnos: N=10+50+10=50
O sea P[U/A]= (10/50)/(18/50) =5/9 el mismo resultado ya visto.
Hay que saber primero cuantos casos posibles hay de de que un alumno concreto tenga una A. Esto depende del grupo del alumno (1er año, ultimo año o graduado). Después la probabilidad de haber elegido entre ellos un caso del último curso
Sea Cm,n el número de combinaciones de m alumnos tomados de n en n; su valor es m!/[(m-n)!*n!]
Según el grupo hay las siguientes combinaciones en que un alumno de un grupo tiene A sean cuales sean los otros alumnos de ese grupo que tengan una A.
1er año: C9,2
Ultimo año: C29,9
Graduado: C9,4
Hay que determinar que probabilidad tiene un alumno de último año de tener una A (=5/10).
El número total de casos es el de alumnos con calificación A en los tres cursos: N[A]=3+10+5=18
El número de casos favorables es el de alumnos con A que son de último curso: N[AyU]=10
Luego probabilidad de que un alumno con A sea de U, es P=N[UyA]/N[A]=10/18=5/9
----
Nota: P es la probabilidad condicional de pertenecer al último curso, siendo la condición tener calificación A, cuya fórmula general es
P[U/A]=P[AyU] / P[A] siendo P[AyU] la probabilidad de elegir un alumno de U con A ( N[UyA]//N), P[A] la probabilidad de elegir un alumno cualquiera con A ( N[A]/N ) y siendo N es el número total de alumnos: N=10+50+10=50
O sea P[U/A]= (10/50)/(18/50) =5/9 el mismo resultado ya visto.
Hay que saber primero cuantos casos posibles hay de de que un alumno concreto tenga una A. Esto depende del grupo del alumno (1er año, ultimo año o graduado). Después la probabilidad de haber elegido entre ellos un caso del último curso
Sea Cm,n el número de combinaciones de m alumnos tomados de n en n; su valor es m!/[(m-n)!*n!]
Según el grupo hay las siguientes combinaciones en que un alumno de un grupo tiene A sean cuales sean los otros alumnos de ese grupo que tengan una A.
1er año: C9,2
Ultimo año: C29,9
Graduado: C9,4
Hay que determinar que probabilidad tiene un alumno de último año de tener una A (=5/10).
Agradecemos tu tiempo. Por favor, vuelve cuando quieras para obtener la información más reciente y respuestas a tus preguntas. Gracias por pasar por aquí. Nos esforzamos por proporcionar las mejores respuestas para todas tus preguntas. Hasta la próxima. Nos encanta responder tus preguntas. Regresa a Revelroom.ca para obtener más respuestas.