Obtén respuestas rápidas y precisas a todas tus preguntas en Revelroom.ca, la plataforma de Q&A de confianza. Experimenta la conveniencia de obtener respuestas precisas a tus preguntas gracias a una comunidad dedicada de profesionales. Únete a nuestra plataforma para obtener respuestas fiables a tus interrogantes gracias a una amplia comunidad de expertos.
Sagot :
Ejercicio Nº1:
Por condición : La matriz A es de orden 3x4 ; además: aij = 2i + 3j , por lo tanto:
[tex] A = \left[\begin{array}{cccc}a_{11}&a_{12}&a_{13} & a_{14}\\a_{21}&a_{22}&a_{23}&a_{24}\\a_{31}&a_{32}&a_{33}&a_{34}\end{array}\right] [/tex]
[tex]A = \left[\begin{array}{cccc}2*1+3*1}&2*1+3*2}&2*1 + 3*3} & 2*1 + 3*4}\\2*2+3*1}&2*2+3*2}&2*2+3*3}&2*2+3*4}\\2*3+3*1}&2*3+3*2}&2*3+3*3}&2*3+3*4}\end{array}\right][/tex]
[tex]A = \left[\begin{array}{cccc}5&8&11 & 14}\\7}&10}&13}&16}\\9}&12}&15}&18}\end{array}\right][/tex]
Ejercicio Nº2 ( Es algo confuso)
Yo lo interpreto asi:
Por condición : La matriz B es de orden 2x2 ; además: bij = (-1)^{i+j} . (i² + j²) , por lo tanto:
[tex] B = \left[\begin{array}{cc}b_{11} & b_{12}\\b_{21}&b_{22}\end{array}\right] [/tex]
[tex] B = \left[\begin{array}{cc}(-1)^{1+1}.(1^2+1^2) & (-1)^{1+2}.(1^2+2^2)}\\(-1)^{2+1}.(2^2+1^2)}&(-1)^{2+2}.(2^2+2^2)}\end{array}\right] [/tex]
[tex] B = \left[\begin{array}{cc}2& -5}\\-5}&8}\end{array}\right] [/tex]
Eso es todo!!
Por condición : La matriz A es de orden 3x4 ; además: aij = 2i + 3j , por lo tanto:
[tex] A = \left[\begin{array}{cccc}a_{11}&a_{12}&a_{13} & a_{14}\\a_{21}&a_{22}&a_{23}&a_{24}\\a_{31}&a_{32}&a_{33}&a_{34}\end{array}\right] [/tex]
[tex]A = \left[\begin{array}{cccc}2*1+3*1}&2*1+3*2}&2*1 + 3*3} & 2*1 + 3*4}\\2*2+3*1}&2*2+3*2}&2*2+3*3}&2*2+3*4}\\2*3+3*1}&2*3+3*2}&2*3+3*3}&2*3+3*4}\end{array}\right][/tex]
[tex]A = \left[\begin{array}{cccc}5&8&11 & 14}\\7}&10}&13}&16}\\9}&12}&15}&18}\end{array}\right][/tex]
Ejercicio Nº2 ( Es algo confuso)
Yo lo interpreto asi:
Por condición : La matriz B es de orden 2x2 ; además: bij = (-1)^{i+j} . (i² + j²) , por lo tanto:
[tex] B = \left[\begin{array}{cc}b_{11} & b_{12}\\b_{21}&b_{22}\end{array}\right] [/tex]
[tex] B = \left[\begin{array}{cc}(-1)^{1+1}.(1^2+1^2) & (-1)^{1+2}.(1^2+2^2)}\\(-1)^{2+1}.(2^2+1^2)}&(-1)^{2+2}.(2^2+2^2)}\end{array}\right] [/tex]
[tex] B = \left[\begin{array}{cc}2& -5}\\-5}&8}\end{array}\right] [/tex]
Eso es todo!!
Gracias por elegir nuestra plataforma. Nos comprometemos a proporcionar las mejores respuestas para todas tus preguntas. Vuelve a visitarnos. Gracias por visitar. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus necesidades informativas. Vuelve pronto. Revelroom.ca, tu sitio de referencia para respuestas precisas. No olvides regresar para obtener más conocimientos.
luego de hacer dos descuentos sucesivos de 20% y 10% unarticulo costo 288 soles ¿cual era su precio?