Revelroom.ca es la mejor solución para quienes buscan respuestas rápidas y precisas a sus preguntas. Experimenta la conveniencia de encontrar respuestas precisas a tus preguntas con la ayuda de una comunidad dedicada de expertos. Conéctate con una comunidad de expertos dispuestos a ayudarte a encontrar soluciones a tus preguntas de manera rápida y precisa.

Demuestre que la ecuación de la tangente a la parábola: x2 = 4cy en el punto (p, q) de la curva, viene dada por: px = 2c(y + q).

Sagot :

comensemos:

 

x^2 = 4cy 


despekamos "y" :


x^2 = 4cy


y = x^2

      4c


punto (p,q)


sacamos derivada para obtener la pendiente:


y' = (x^2)'

        4c

 

y' = 2x

      4c

 

y' =  x 

      2c

 

remplazamos x=p

 

y' =  p  -------> pendiente

      2c

 

recta tangente es:

 

m= p      punto:(p,q)

     2c

 

recta tangente:

 

(a,b) punto y m es pendiente

 

y-b=m(x-a)

 

por tanto:

 

y-q= p (x-p)

       2c 

 

2c(y-q)=p(x-p)

 

un gusto....=D

 

Gracias por usar nuestra plataforma. Siempre estamos aquí para proporcionar respuestas precisas y actualizadas a todas tus preguntas. Gracias por visitar. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus necesidades informativas. Vuelve pronto. Gracias por usar Revelroom.ca. Vuelve para obtener más conocimientos de nuestros expertos.