Bienvenido a Revelroom.ca, donde puedes obtener respuestas confiables y rápidas con la ayuda de nuestros expertos. Explora respuestas detalladas a tus dudas de una comunidad de expertos en diferentes campos. Obtén respuestas rápidas y fiables a tus preguntas con la ayuda de nuestra comunidad dedicada de expertos en nuestra plataforma.

las figuras 1, 2, 3, 4 constan de 1, 5, 13, 25 cuadritos. Si se continua con este esquema, determina cuantos cuadritos habrá en la figura 2014.

necesito de su ayuda me pueden dejar constancia de como les dio el resultado se los agradecería mucho


Sagot :

F4BI4N
Hola Buenos días ,

Vamos a analizar más tu problema de seguro se trata de una sucesión y necesitamos hallar el 2014 término.

1 -----> 1
2 -----> 5
3 -----> 13
4 -----> 25
.  ----->  .
.  ----> . 
. ----->  .. 
2014 --> ??

Necesitamos hallar el término general que pueda modelar esta sucesión .

Analizemos las diferencias ,
entre el 2° y 1° => 5 - 1 = 4
entre el 3° y 2° => 13 - 5 = 8
entre el 4° y 3° => 25-13 = 12
Si te das cuenta son múltiplos de 4.

El término general para este tipo de sucesiones siempre esta relacionado con un n^2 - n o cosas parecidas es por los múltiplos ,  la idea es partir multiplicando por lo más pequeño ( 2)

Veamos si hallamos algun padrón :

1 ---> 2*1 - 2*1 + 1 = 1
2 ---> 2*4 - 2*2 + 1 = 5 
3 ---> 2*9 - 2*3 + 1 = 13
4 -->  2*16 - 2*4 + 1 = 25
... ---> ....
... ---> ...
an --> 2*n² - 2n + 1  => 2(n² - n ) + 1 
Ese es el padrón , el número que multiplica el primer 2 se va elevando al cuadrado mientras el otro permanece igual.

Ahora está muerto el ejercicio , sabiendo esto sabemos el número de  " cuadritos " en cualquier figura ,
Particularmente , en la figura 2014 habrán :

a(2014) = 2*2014²  - 2*2014 + 1 Es un número grande de cuadritos xD
           = 2(2014² - 2014) + 1
           = 2(2014(2014-1)) + 1
           =  4028(2014 - 1) + 1 
           = 4028 * 2013   + 1
           =  8108365 <- Número de cuadritos en la figura 2014.

Espero haber ayudado , 
Sl2