Bienvenido a Revelroom.ca, donde tus preguntas son respondidas por especialistas y miembros experimentados de la comunidad. Descubre soluciones completas a tus preguntas con la ayuda de profesionales experimentados en nuestra amigable plataforma. Nuestra plataforma ofrece una experiencia continua para encontrar respuestas fiables de una red de profesionales experimentados.

como resolver los ejercicios de adicio, sustracción, multiplicación y división de números complejos?



Sagot :

Para resolver estas operaciones se amplia el conjunto de los números introduciendo nuevos números llamadosimaginarios.

Número racional : a/b en orden y siendo b diferente de 0 ,determinan el número fraccionario a/b,del cual el primer número a es el numerador y el segundo número b es el denominador.

Análogamente, un par de números reales a y b, dados en un cierto orden, definen un número complejo que se representa ( a ; b ), del cual el primer número a se llama componente real, y el segundo b,componente imaginaria.

( -1 ; 4 )

La componente real es -1 y la componente imaginaria es 4

 Los números imaginarios se representan por la componente imaginaria seguida de la unidad imaginaria i

Adición de números complejos:

Se llama suma de dos o más números complejos al complejo que tiene como componente real la suma de las componentes reales y como componente imaginaria la suma de las componentes imaginarias de los números sumandos.

Suma = ( 2 ; 3 ) + ( 4; 5 ) =[ ( 2 + 4 ) ; ( 3 +5 )] = (6 ; 8 )

Representar en forma binómica

( 2/3 ; 5 ) = ( 2/3 + 5i ) ( 1/3 ; -2 ) = ( 1/3 - 2i)

Complejos conjugados :

 Son iguales en valor absoluto tanto reales como imaginarios,pero éstos últimos tienen diferente signo.

Suma (3 + 2i ) + (3 - 2i ) = 3 +3 = 2.3 Su resultado es el DUPLO REAL

Resta ( 3 + 2i ) - ( 3 - 2i ) = 2i+2i = 2.2 = 4i Su resultado es DUPLO IMAGINARIO

Potencia de números complejos  

 

i0 = 1 i4= 1 i8= 1 i1 = i i5= i i9= i i2 = -1 i6 = - 1 i10= -1 i3= - i i7= - i i11 = - i

 

Multiplicación

Producto de una unidad imaginaria

( 2 + 4i ) .( 1 - 2i ) = Se aplica propiedad distributiva

( 2 . 1 ) + ( 2 . - 2i ) + ( 4i . 1 ) + ( 4i . - 2i ) = 2 4i + 4i + 4i2=

2 + 4 . - 1 =

2 - 4 = -3

 

Complejos conjugados :

El producto de dos complejos conjugados es igual a la suma de los cuadrados de las dos componentes

  ( 3 + 2i ) . ( 3 - 2i ) = ( 3 )2 - ( 2i )2 =

9 - 4i2 = 9 - 4 . -1 =

9 + 4 = 13

Aplicando propiedad distributiva

( 3 + 2i ) . ( 3 - 2i ) =

( 3 . 3 ) + ( 3 . - 2i ) + ( 2i . 3 )+ ( 2i . - 2i ) =

9 - 6i + 6i - - 4i2 = 
9 - 4 . - 1=
9 + 4 = 13

Ejemplo de no conjugado

 

( 3 + 2i ) . ( 4 - 3i ) =

(  3 . 4) + ( 3.- 3i ) + ( 2i . 4 )+ ( 2 i. - 3i ) =

12 - 9i +8i - 6i =
12 -9i + 8i - 6 . (- 1)=
12 - i + 6 =
( 18 - i )

División de números complejos

5 - 2i 
4 + 3i

( 5 - 2i ) . ( 4 - 3i ) =
( 4 + 3i) . ( 4 - 3i )


20 - 8i - 15i + 6i2 = 
42 + 32

20 - 8i - 15i - 6 =
16 + 9

14 - 23i 
25

( 14/25 - 23/25i )

Raíces de índice par de números negativos

√-25 no tenía solución en el conjunto de los números reales, pero al considerar los números complejos este problema queda resuelto.

√-25 = + 5 y - 5

+ 5i . + 5i = ( 5i )2 = 25i2 = -25

- 5i . - 5i = ( - 5i )2 = 25i2= - 25

Representación geométrica o gráfica de los números Complejos

A cada complejo le corresponde el punto del plano cuya abscisa es la componente real y su ordenada la componente imaginaria.

1) Al número complejo ( - 3; 2 ) = - 3 + 2i le corresponde el punto A de abscisa - 3 y ordenada 2

2) A todo número imaginario que tiene componente real 0, tiene el punto que le corresponde sobre el eje de las ordenadas:

a) ( 0 ; 3) = 3i le corresponde el punto B
b) ( 0 ; - 2 ) = - 2i le corresponde el punto C
c) (0 ; 1) = 1i le corresponde el punto U

3) Todos los números reales, que son complejos que tienen componente imaginaria 0, están representados por el eje de las x

a) ( 5 ; 0 ) = 5 le corresponde el punto D.

 

Forma polar trigonométrica

Si se considera el vector que tiene por origen O de coordenadas y por estremo el punto P, es decir ,semirrecta OP, el módulo de este vector se llama módulo del complejo ( a ; b ).

Lo denominamos módulo δ de ( a ; b )

El ángulo que forma dicho vector con el semieje positivo de las x en el sentido contrario a las agujas del reloj, en este caso ω, se llama argumento del número complejo ( a ; b )

Se tiene que:

cos ω =           a    ⇒ a =     δ. cos ω 
δ         

sen ω =           a    ⇒ b =     δ. sen ω 
δ         

bi    =   δ. sen ω i

Sumando miembro a miembro [ 1 ] y [ 2 ]

a + bi =   δ. cos ω + δ. sen ω

Sacando factor común:

a + bi =  δ.( cos ω + i sen ω )

Ejemplo:

a = √3       y        b = 1

+ √4 = + 2

cos ω =           √3   
                        2 

sen ω =    1   
              2

⇒ ω = 30º

La forma trigonométrica del número complejo dado:

√3 + i = 2 ( cos 30º + i sen 30º )

Esperamos que nuestras respuestas te hayan sido útiles. Vuelve cuando quieras para obtener más información y respuestas a otras preguntas que tengas. Gracias por usar nuestro servicio. Siempre estamos aquí para proporcionar respuestas precisas y actualizadas a todas tus preguntas. Revelroom.ca, tu sitio de confianza para respuestas. No olvides regresar para obtener más información.