Obtén las mejores soluciones a tus preguntas en Revelroom.ca, la plataforma de Q&A de confianza. Nuestra plataforma te conecta con profesionales dispuestos a ofrecer respuestas precisas a todas tus preguntas. Conéctate con una comunidad de expertos dispuestos a ayudarte a encontrar soluciones precisas a tus interrogantes de manera rápida y eficiente.

como resolver los ejercicios de adicio, sustracción, multiplicación y división de números complejos?



Sagot :

Para resolver estas operaciones se amplia el conjunto de los números introduciendo nuevos números llamadosimaginarios.

Número racional : a/b en orden y siendo b diferente de 0 ,determinan el número fraccionario a/b,del cual el primer número a es el numerador y el segundo número b es el denominador.

Análogamente, un par de números reales a y b, dados en un cierto orden, definen un número complejo que se representa ( a ; b ), del cual el primer número a se llama componente real, y el segundo b,componente imaginaria.

( -1 ; 4 )

La componente real es -1 y la componente imaginaria es 4

 Los números imaginarios se representan por la componente imaginaria seguida de la unidad imaginaria i

Adición de números complejos:

Se llama suma de dos o más números complejos al complejo que tiene como componente real la suma de las componentes reales y como componente imaginaria la suma de las componentes imaginarias de los números sumandos.

Suma = ( 2 ; 3 ) + ( 4; 5 ) =[ ( 2 + 4 ) ; ( 3 +5 )] = (6 ; 8 )

Representar en forma binómica

( 2/3 ; 5 ) = ( 2/3 + 5i ) ( 1/3 ; -2 ) = ( 1/3 - 2i)

Complejos conjugados :

 Son iguales en valor absoluto tanto reales como imaginarios,pero éstos últimos tienen diferente signo.

Suma (3 + 2i ) + (3 - 2i ) = 3 +3 = 2.3 Su resultado es el DUPLO REAL

Resta ( 3 + 2i ) - ( 3 - 2i ) = 2i+2i = 2.2 = 4i Su resultado es DUPLO IMAGINARIO

Potencia de números complejos  

 

i0 = 1 i4= 1 i8= 1 i1 = i i5= i i9= i i2 = -1 i6 = - 1 i10= -1 i3= - i i7= - i i11 = - i

 

Multiplicación

Producto de una unidad imaginaria

( 2 + 4i ) .( 1 - 2i ) = Se aplica propiedad distributiva

( 2 . 1 ) + ( 2 . - 2i ) + ( 4i . 1 ) + ( 4i . - 2i ) = 2 4i + 4i + 4i2=

2 + 4 . - 1 =

2 - 4 = -3

 

Complejos conjugados :

El producto de dos complejos conjugados es igual a la suma de los cuadrados de las dos componentes

  ( 3 + 2i ) . ( 3 - 2i ) = ( 3 )2 - ( 2i )2 =

9 - 4i2 = 9 - 4 . -1 =

9 + 4 = 13

Aplicando propiedad distributiva

( 3 + 2i ) . ( 3 - 2i ) =

( 3 . 3 ) + ( 3 . - 2i ) + ( 2i . 3 )+ ( 2i . - 2i ) =

9 - 6i + 6i - - 4i2 = 
9 - 4 . - 1=
9 + 4 = 13

Ejemplo de no conjugado

 

( 3 + 2i ) . ( 4 - 3i ) =

(  3 . 4) + ( 3.- 3i ) + ( 2i . 4 )+ ( 2 i. - 3i ) =

12 - 9i +8i - 6i =
12 -9i + 8i - 6 . (- 1)=
12 - i + 6 =
( 18 - i )

División de números complejos

5 - 2i 
4 + 3i

( 5 - 2i ) . ( 4 - 3i ) =
( 4 + 3i) . ( 4 - 3i )


20 - 8i - 15i + 6i2 = 
42 + 32

20 - 8i - 15i - 6 =
16 + 9

14 - 23i 
25

( 14/25 - 23/25i )

Raíces de índice par de números negativos

√-25 no tenía solución en el conjunto de los números reales, pero al considerar los números complejos este problema queda resuelto.

√-25 = + 5 y - 5

+ 5i . + 5i = ( 5i )2 = 25i2 = -25

- 5i . - 5i = ( - 5i )2 = 25i2= - 25

Representación geométrica o gráfica de los números Complejos

A cada complejo le corresponde el punto del plano cuya abscisa es la componente real y su ordenada la componente imaginaria.

1) Al número complejo ( - 3; 2 ) = - 3 + 2i le corresponde el punto A de abscisa - 3 y ordenada 2

2) A todo número imaginario que tiene componente real 0, tiene el punto que le corresponde sobre el eje de las ordenadas:

a) ( 0 ; 3) = 3i le corresponde el punto B
b) ( 0 ; - 2 ) = - 2i le corresponde el punto C
c) (0 ; 1) = 1i le corresponde el punto U

3) Todos los números reales, que son complejos que tienen componente imaginaria 0, están representados por el eje de las x

a) ( 5 ; 0 ) = 5 le corresponde el punto D.

 

Forma polar trigonométrica

Si se considera el vector que tiene por origen O de coordenadas y por estremo el punto P, es decir ,semirrecta OP, el módulo de este vector se llama módulo del complejo ( a ; b ).

Lo denominamos módulo δ de ( a ; b )

El ángulo que forma dicho vector con el semieje positivo de las x en el sentido contrario a las agujas del reloj, en este caso ω, se llama argumento del número complejo ( a ; b )

Se tiene que:

cos ω =           a    ⇒ a =     δ. cos ω 
δ         

sen ω =           a    ⇒ b =     δ. sen ω 
δ         

bi    =   δ. sen ω i

Sumando miembro a miembro [ 1 ] y [ 2 ]

a + bi =   δ. cos ω + δ. sen ω

Sacando factor común:

a + bi =  δ.( cos ω + i sen ω )

Ejemplo:

a = √3       y        b = 1

+ √4 = + 2

cos ω =           √3   
                        2 

sen ω =    1   
              2

⇒ ω = 30º

La forma trigonométrica del número complejo dado:

√3 + i = 2 ( cos 30º + i sen 30º )