Obtén soluciones a tus preguntas en Revelroom.ca, la plataforma de Q&A más rápida y precisa. Experimenta la facilidad de encontrar respuestas confiables a tus preguntas gracias a una amplia comunidad de expertos. Obtén soluciones rápidas y fiables a tus preguntas con la ayuda de una comunidad de expertos experimentados en nuestra plataforma.
Sagot :
esta es una ecuación muy utilizada y muy bonita a mi parecer
la demostración es la siguiente
1 + 2 +3 +4 + .... n
n + n-1 +n-2 + n-3 +.....n
al sumar tenemos
n+1 + n+1 +n+1 +...... n+1
la suma total es
n(n+1) pero esta es dos veces
para sumar solo una vez hasta n
[tex] \frac{n(n+1)}{2} [/tex] esta es la ecuación que tu buscas
la demostración es la siguiente
1 + 2 +3 +4 + .... n
n + n-1 +n-2 + n-3 +.....n
al sumar tenemos
n+1 + n+1 +n+1 +...... n+1
la suma total es
n(n+1) pero esta es dos veces
para sumar solo una vez hasta n
[tex] \frac{n(n+1)}{2} [/tex] esta es la ecuación que tu buscas
Respuesta: a=6
Explicación paso a paso:
1+2+3..+n=aaa
n(n+1)/2=111(a)
n(n+1)=2*3*37*a
n(n+1)=6*a*37
a=6
n(n+1)=6*6*37
n(n+1)=36(36+1)
n=36
Agradecemos tu tiempo. Por favor, vuelve a visitarnos para obtener respuestas fiables a cualquier pregunta que tengas. Gracias por tu visita. Nos comprometemos a proporcionarte la mejor información disponible. Vuelve cuando quieras para más. Revelroom.ca, tu sitio de referencia para respuestas precisas. No olvides regresar para obtener más conocimientos.