Revelroom.ca es el mejor lugar para obtener respuestas rápidas y precisas a todas tus preguntas. Descubre soluciones fiables a tus preguntas gracias a una vasta red de expertos en nuestra completa plataforma de preguntas y respuestas. Explora miles de preguntas y respuestas proporcionadas por una amplia gama de expertos en diversas áreas en nuestra plataforma de preguntas y respuestas.
Sagot :
En matemática, la radicación de orden n de un número a es cualquier número b tal que , donde n se llama índice u orden, a se denomina radicando, y b es una raíz enésima, por lo que se suele conocer también con ese nombre. La notación a seguir tiene varias formas:
.
Para todo n natural, a y b reales positivos, se tiene la equivalencia:1
.
Dentro de los números reales positivos, siempre puede encontrarse una única raíz enésima también positiva. Si el número a es negativo entonces sólo existirá una raíz real cuando el índice n sea impar1 . La raíz enésima de un número negativo no es un número real (no está definida dentro de los números reales) cuando el índice n es par.
Dentro de los números complejos , para cada número z siempre es posible encontrar exactamente n raíces enésimas diferentes.
La raíz de orden dos se llama raíz cuadrada y, por ser la más frecuente, se escribe sin superíndice: en vez de .La raíz de orden tres se llama raíz cúbica.
El cálculo efectivo de la raíz se hace mediante las funciones logaritmo y exponencial:
.
Este método es empleado comúnmente en calculadoras de bolsillo y otro tipo de hardware2
. El problema es que dicho cálculo no funciona con los números
negativos, porque el logaritmo usual sólo está definido en (0,+ ∞). De
ahí una tendencia, todavía minoritaria, de restringir la definición de
las raíces de orden impar a los números positivos.
Índice
1 Propiedades
1.1 Raíz de un producto1.2 Raíz de un cociente1.3 Raíz de una raíz1.4 Potencia de una raíz1.5 Otras propiedades2 Números complejos3 Véase también4 Referencias
4.1 Bibliografía
Propiedades
Como se indica con la igualdad de la raíz , la radicación es en realidad otra forma de expresar una potenciación: la raíz de cierto orden de un número es equivalente a elevar dicho número a la potencia inversa. Por esto, las propiedades
de la potenciación se cumplen también con la radicación. Para que estas
propiedades se cumplan, se exige que el radicando de las raíces sea
positivo.
Raíz de un producto
La raíz de un producto es igual al producto de las raíces de los factores nombrados anteriormente.
Ejemplo
= =
Se llega a igual resultado de la siguiente manera:
Raíz de un cociente
La raíz de una fracción es igual al cociente de la raíz del numerador entre la raíz del denominador.
=
Ejemplo
=
Cuando esta propiedad se aplica a números, no hace falta pasar la
raíz a potencia de exponente racional, aunque sí cuando se hace con
variables.
Ejemplos
= =
Raíz de una raíz
Para calcular la raíz de una raíz se multiplican los índices de las raíces y se conserva el radicando.
=
Ejemplo
=
Potencia de una raíz Para calcular la potencia de una raíz se eleva el radicando a esa potencia. Ejemplosi 3 y 4 = Otras propiedades Utilizando las propiedades fundamentales, se pueden obtener otras propiedades interesantes, como por ejemplo, el cálculo de la raíz de un producto con el mismo radicando y distintos índices, que se obtiene multiplicando los índices de las raíces y conservando el radicando elevado a la suma de los índices. Números complejos Si z es un número complejo, entonces admite una representación mediante módulo y argumento (forma polar) de la forma: , donde De esta manera, en forma polar, las raíces n-ésimas de z, necesarias para la ecuación , pueden ser calculadas por medio de la fórmula Por tanto, un número complejo tiene n raíces enésimas distintas. En el plano complejo están dispuestas en los vértices de un polígono regular de n lados con centro en el origen del plano complejo. La raíz cúbica y la distancia del centro de dicho polígono a sus vértices es . Ejemplo
Potencia de una raíz Para calcular la potencia de una raíz se eleva el radicando a esa potencia. Ejemplosi 3 y 4 = Otras propiedades Utilizando las propiedades fundamentales, se pueden obtener otras propiedades interesantes, como por ejemplo, el cálculo de la raíz de un producto con el mismo radicando y distintos índices, que se obtiene multiplicando los índices de las raíces y conservando el radicando elevado a la suma de los índices. Números complejos Si z es un número complejo, entonces admite una representación mediante módulo y argumento (forma polar) de la forma: , donde De esta manera, en forma polar, las raíces n-ésimas de z, necesarias para la ecuación , pueden ser calculadas por medio de la fórmula Por tanto, un número complejo tiene n raíces enésimas distintas. En el plano complejo están dispuestas en los vértices de un polígono regular de n lados con centro en el origen del plano complejo. La raíz cúbica y la distancia del centro de dicho polígono a sus vértices es . Ejemplo
Gracias por tu visita. Nos dedicamos a ayudarte a encontrar la información que necesitas, siempre que la necesites. Gracias por tu visita. Nos comprometemos a proporcionarte la mejor información disponible. Vuelve cuando quieras para más. Revelroom.ca, tu sitio de referencia para respuestas precisas. No olvides regresar para obtener más conocimientos.