Revelroom.ca facilita la búsqueda de soluciones para preguntas cotidianas y complejas con la ayuda de nuestra comunidad. Obtén respuestas rápidas y fiables a tus preguntas con la ayuda de nuestra comunidad dedicada de expertos en nuestra plataforma. Conéctate con una comunidad de expertos dispuestos a ayudarte a encontrar soluciones a tus preguntas de manera rápida y precisa.
Sagot :
Si:
[tex]A = \left(\begin{array}{ccc}-2&5&-1\\3&0&-4\\3&1&-5\end{array}\right) [/tex]
Calcular: [tex]A^{-1}[/tex]
NOTA:
[tex]A^{-1} = \frac{1}{\|A\|} * Adj(A)[/tex]
• Solución:
i) Calculamos el determinante de la matriz A.( por el metodo de Jacobi: )
Nota: Solo poseen inversa , aquellas matrices cuadradas "no singulares" (determinante diferente de 0), además esta es única.
[tex]\|A\| = \left|\begin{array}{ccc}-2&5&-1\\3&0&-4\\3&1&-5\end{array}\right|\ ^{F_{12}(1)}_{F_{23}(-1)} = \left|\begin{array}{ccc}1&5&-5\\3&0&-4\\0&1&-1\end{array}\right|\ ^{F_{21}(-3)} [/tex]
[tex]\|A\| =\left|\begin{array}{ccc}1&5&-5\\0&-15&11\\0&1&-1\end{array}\right| = \left|\begin{array}{cc}-15&11\\1&-1\end{array}\right| = (-15)(-1) - (1)(11) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \to \|A\| = 4[/tex]
ii) Calculamos la matriz de cofactores de la matriz A, denotado por: cof (A)
[tex]Cof(A) = (\alpha _{ij})_{nxn} \ \ \ \ \ / \alpha _{ij}(-1)^{i+j} M_{ij}[/tex]
⇒ [tex]\alpha _{11} = (-1)^{1+1} * \left|\begin{array}{cc}0&-4\\1&-5&\end{array}\right| = 4[/tex]
⇒ [tex]\alpha _{12} = (-1)^{1+2} * \left|\begin{array}{cc}3&-4\\3&-5&\end{array}\right| = 3[/tex]
⇒ [tex]\alpha _{13} = (-1)^{1+3} * \left|\begin{array}{cc}3&0\\3&1&\end{array}\right| = 3[/tex]
⇒ [tex]\alpha _{21} = (-1)^{2+1} * \left|\begin{array}{cc}5&-1\\1&-5&\end{array}\right| = 24[/tex]
⇒ [tex]\alpha _{22} = (-1)^{2+2} * \left|\begin{array}{cc}-2&-1\\3&-5&\end{array}\right| = 13[/tex]
⇒ [tex]\alpha _{23} = (-1)^{2+3} * \left|\begin{array}{cc}-2&5\\3&1&\end{array}\right| = 17[/tex]
⇒ [tex]\alpha _{31} = (-1)^{3+1} * \left|\begin{array}{cc}5&-1\\0&-4&\end{array}\right| = -20[/tex]
⇒ [tex]\alpha _{32} = (-1)^{3+2} * \left|\begin{array}{cc}-2&-1\\3&-4&\end{array}\right| = -11[/tex]
⇒ [tex]\alpha _{33} = (-1)^{3+3} * \left|\begin{array}{cc}-2&5\\3&0&\end{array}\right| = -15[/tex]
Por consiguiente:
[tex]cof (A) = \left(\begin{array}{ccc}4&3&3\\24&13&17\\-20&-11&-15\end{array}\right)[/tex]
iii) Calcular la matriz adjunta de A :
• Recuerda que: [tex]\{cof(A)\}^T = Adj(A)[/tex]
De tal modo:
[tex]Adj(A) = \left(\begin{array}{ccc}4&24&-20\\3&13&-11\\3&17&-15\end{array}\right) [/tex]
iv) Por último, calculamos la matriz inversa , denotado por: A⁻¹
[tex]A^{-1} = { \frac{1}{4}} * \left(\begin{array}{ccc}4&24&-20\\3&13&-11\\3&17&-15\end{array}\right) \ \ \ \ \ \ A^{-1} = \left(\begin{array}{ccc}1&6&-5\\ \\ \frac{3}{4} & \frac{13}{4} & -\frac{11}{4}\\ \\ \frac{3}{4} & \frac{17}{4} & -\frac{15}{4} \end{array}\right)[/tex]
Eso es todo!!! uff :)
[tex]A = \left(\begin{array}{ccc}-2&5&-1\\3&0&-4\\3&1&-5\end{array}\right) [/tex]
Calcular: [tex]A^{-1}[/tex]
NOTA:
[tex]A^{-1} = \frac{1}{\|A\|} * Adj(A)[/tex]
• Solución:
i) Calculamos el determinante de la matriz A.( por el metodo de Jacobi: )
Nota: Solo poseen inversa , aquellas matrices cuadradas "no singulares" (determinante diferente de 0), además esta es única.
[tex]\|A\| = \left|\begin{array}{ccc}-2&5&-1\\3&0&-4\\3&1&-5\end{array}\right|\ ^{F_{12}(1)}_{F_{23}(-1)} = \left|\begin{array}{ccc}1&5&-5\\3&0&-4\\0&1&-1\end{array}\right|\ ^{F_{21}(-3)} [/tex]
[tex]\|A\| =\left|\begin{array}{ccc}1&5&-5\\0&-15&11\\0&1&-1\end{array}\right| = \left|\begin{array}{cc}-15&11\\1&-1\end{array}\right| = (-15)(-1) - (1)(11) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \to \|A\| = 4[/tex]
ii) Calculamos la matriz de cofactores de la matriz A, denotado por: cof (A)
[tex]Cof(A) = (\alpha _{ij})_{nxn} \ \ \ \ \ / \alpha _{ij}(-1)^{i+j} M_{ij}[/tex]
⇒ [tex]\alpha _{11} = (-1)^{1+1} * \left|\begin{array}{cc}0&-4\\1&-5&\end{array}\right| = 4[/tex]
⇒ [tex]\alpha _{12} = (-1)^{1+2} * \left|\begin{array}{cc}3&-4\\3&-5&\end{array}\right| = 3[/tex]
⇒ [tex]\alpha _{13} = (-1)^{1+3} * \left|\begin{array}{cc}3&0\\3&1&\end{array}\right| = 3[/tex]
⇒ [tex]\alpha _{21} = (-1)^{2+1} * \left|\begin{array}{cc}5&-1\\1&-5&\end{array}\right| = 24[/tex]
⇒ [tex]\alpha _{22} = (-1)^{2+2} * \left|\begin{array}{cc}-2&-1\\3&-5&\end{array}\right| = 13[/tex]
⇒ [tex]\alpha _{23} = (-1)^{2+3} * \left|\begin{array}{cc}-2&5\\3&1&\end{array}\right| = 17[/tex]
⇒ [tex]\alpha _{31} = (-1)^{3+1} * \left|\begin{array}{cc}5&-1\\0&-4&\end{array}\right| = -20[/tex]
⇒ [tex]\alpha _{32} = (-1)^{3+2} * \left|\begin{array}{cc}-2&-1\\3&-4&\end{array}\right| = -11[/tex]
⇒ [tex]\alpha _{33} = (-1)^{3+3} * \left|\begin{array}{cc}-2&5\\3&0&\end{array}\right| = -15[/tex]
Por consiguiente:
[tex]cof (A) = \left(\begin{array}{ccc}4&3&3\\24&13&17\\-20&-11&-15\end{array}\right)[/tex]
iii) Calcular la matriz adjunta de A :
• Recuerda que: [tex]\{cof(A)\}^T = Adj(A)[/tex]
De tal modo:
[tex]Adj(A) = \left(\begin{array}{ccc}4&24&-20\\3&13&-11\\3&17&-15\end{array}\right) [/tex]
iv) Por último, calculamos la matriz inversa , denotado por: A⁻¹
[tex]A^{-1} = { \frac{1}{4}} * \left(\begin{array}{ccc}4&24&-20\\3&13&-11\\3&17&-15\end{array}\right) \ \ \ \ \ \ A^{-1} = \left(\begin{array}{ccc}1&6&-5\\ \\ \frac{3}{4} & \frac{13}{4} & -\frac{11}{4}\\ \\ \frac{3}{4} & \frac{17}{4} & -\frac{15}{4} \end{array}\right)[/tex]
Eso es todo!!! uff :)
Gracias por utilizar nuestro servicio. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus preguntas. Visítanos nuevamente para obtener más información. Esperamos que esto te haya sido útil. Por favor, vuelve siempre que necesites más información o respuestas a tus preguntas. Revelroom.ca está aquí para tus preguntas. No olvides regresar para obtener nuevas respuestas.