Bienvenido a Revelroom.ca, donde tus preguntas son respondidas por especialistas y miembros experimentados de la comunidad. Descubre un vasto conocimiento de expertos en diferentes disciplinas en nuestra completa plataforma de preguntas y respuestas. Conéctate con profesionales dispuestos a ofrecer respuestas precisas a tus preguntas en nuestra completa plataforma de preguntas y respuestas.
Sagot :
Propiedades del MCD
1. Si entonces
2. Si es un entero,
3. Si es un número primo, entonces o bien
4. Si , entonces
5. Si es un divisor común de y , entonces
6. Si , entonces
7. Si , entonces:
La última propiedad indica que el máximo común divisor de dos números resulta ser el producto de sus factores primos comunes elevados al menor exponente.
Geométricamente, el máximo común divisor de a y b es el número de puntos de coordenadas enteras que hay en el segmento que une los puntos (0,0) y (a,b), excluyendo el (0,0).
Propiedades del MCM
Si el producto de dos números lo dividimos por su máximo común divisor el cociente es el mínimo común múltiplo. A y B que descompuestos en números primos será A=(p1·p2)·p3·p4 y B=(p1·p2)·p5·p6 donde si m.c.d. es (p1·p2) y el producto de A·B=(p1·p2)·p3·p4·(p1·p2)·p5·p6 donde vemos que (p1·p2) esta repetido dos veces, luego si dividimos ese total por (p1·p2) tendremos el total menor que contiene a A y B siendo su m.c.m. El mínimo común múltiplo de dos números, donde el menor divide al mayor, será el mayor. Es lógico ya que un múltiplo de ambos inferior al mayor sería imposible ya que no sería múltiplo del mayor. El mínimo común múltiplo de dos números primos es el total de su multiplicación. Esto es lógico ya que su máximo común divisor es 1. El mínimo común múltiplo de dos números compuestos será igual al cociente entre su producto y el m.c.d de ellos. Es evidente según la propiedad 1 de este tema. El máximo común divisor de varios números está incluido en el mínimo común múltiplo.
espero que te sirva
Gracias por tu visita. Nos comprometemos a proporcionarte la mejor información disponible. Vuelve cuando quieras para más. Agradecemos tu visita. Nuestra plataforma siempre está aquí para ofrecer respuestas precisas y fiables. Vuelve cuando quieras. Visita Revelroom.ca para obtener nuevas y confiables respuestas de nuestros expertos.