Obtén respuestas rápidas y precisas a todas tus preguntas en Revelroom.ca, la plataforma de Q&A de confianza. Descubre respuestas completas a tus preguntas de profesionales experimentados en nuestra plataforma amigable. Explora soluciones completas a tus preguntas con la ayuda de una amplia gama de profesionales en nuestra plataforma amigable.
Sagot :
[tex] \sqrt{2x+3} + \sqrt{x-2} =4[/tex]
1) Determinar condiciones de existencia de la raiz
2x + 3 > 0
2x > - 3
x > - 3/2
x - 2 > 0
x > 2 x > 2
2)
[tex] \sqrt{2x+3} =4- \sqrt{x-2} [/tex]
3) elevando todo al cuadrado
[tex]2x-3=16-8 \sqrt{x-2} +x-2 \\ x-11=-8 \sqrt{x-2} [/tex]
elevando nuevamente al cuadrado
[tex] x^{2} -22x+121=64x-128 \\ x^{2} -86x+249=0[/tex]
4) Resolviendo la ecuación de segundo grado
x1 = 3
x2 = 83 x = 3
√(2x + 3) +
√(x-2) = 4 elevamos los dos miembros al cuadrado
[√(2x + 3) + √(x-2)]² = 4²
[√(2x + 3) + √(x-2)]² = 4² resolvemos el trinomio cuadrado perfecto
[√(2x + 3)]² + 2[√(2x + 3)* √(x-2)] + [√(x-2)]² = 16
(2x + 3) + 2 [√(2x² - 4x + 3x - 6) ] + (x-2) = 16 sacamos las raíces
(2x + 3) + 2 [√(2x² - x - 6) ] + (x-2) = 16
3x + 1 + 2 [√(2x² - x - 6) ] = 16 juntamos las x
2 [√(2x² - x - 6) ] = 16 – 3x – 1
[√(2x² - x - 6) ] = (15 – 3x) /2 pasamos el 2 dividiendo
(2x² - x - 6) = [15/2 – 3x/2]² pasamos la raíz como potencia
2x² - x – 6 = 225/4 – 2. 15/2.3x/2 + 9x²/4
2x² - x – 6 = 225/4 – 45x/2 + 9x²/4
2x² - 9x²/4 – x + 45x/2 – 6 – 225/4 = 0
-1x²/4 + 43x/2 – 249/4 = 0 resolviendo la ecuación
-b +- √ b² - 4ac donde a = -1/4 b = 43/2 c= -249/4
2a
- 43/2 +- √1849/4 - 4(-1/4)(-249/4)
2(-1/4)
- 43/2 +- √400
-1/2
- 43/2 +- 20
-1/2
x1 = (-43/2 + 20) : -1 /2 --> x1 = -3/2 : -1/2 --> x1= 3
x2 = (-43/2 - 20) : -1/2 --> x2 = -83/2 : -1/2 --> x2 = 83
El resultado válido es el 3 porque si reemplazamos el 83 nos da un numero negativo en la segunda raíz, y no es posible, entonces
x = 3
Espero que te sirva, salu2!!!!
[√(2x + 3) + √(x-2)]² = 4²
[√(2x + 3) + √(x-2)]² = 4² resolvemos el trinomio cuadrado perfecto
[√(2x + 3)]² + 2[√(2x + 3)* √(x-2)] + [√(x-2)]² = 16
(2x + 3) + 2 [√(2x² - 4x + 3x - 6) ] + (x-2) = 16 sacamos las raíces
(2x + 3) + 2 [√(2x² - x - 6) ] + (x-2) = 16
3x + 1 + 2 [√(2x² - x - 6) ] = 16 juntamos las x
2 [√(2x² - x - 6) ] = 16 – 3x – 1
[√(2x² - x - 6) ] = (15 – 3x) /2 pasamos el 2 dividiendo
(2x² - x - 6) = [15/2 – 3x/2]² pasamos la raíz como potencia
2x² - x – 6 = 225/4 – 2. 15/2.3x/2 + 9x²/4
2x² - x – 6 = 225/4 – 45x/2 + 9x²/4
2x² - 9x²/4 – x + 45x/2 – 6 – 225/4 = 0
-1x²/4 + 43x/2 – 249/4 = 0 resolviendo la ecuación
-b +- √ b² - 4ac donde a = -1/4 b = 43/2 c= -249/4
2a
- 43/2 +- √1849/4 - 4(-1/4)(-249/4)
2(-1/4)
- 43/2 +- √400
-1/2
- 43/2 +- 20
-1/2
x1 = (-43/2 + 20) : -1 /2 --> x1 = -3/2 : -1/2 --> x1= 3
x2 = (-43/2 - 20) : -1/2 --> x2 = -83/2 : -1/2 --> x2 = 83
El resultado válido es el 3 porque si reemplazamos el 83 nos da un numero negativo en la segunda raíz, y no es posible, entonces
x = 3
Espero que te sirva, salu2!!!!
Gracias por utilizar nuestro servicio. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus preguntas. Visítanos nuevamente para obtener más información. Esperamos que nuestras respuestas te hayan sido útiles. Vuelve cuando quieras para obtener más información y respuestas a otras preguntas que tengas. Tu conocimiento es valioso. Regresa a Revelroom.ca para obtener más respuestas e información.