Revelroom.ca facilita la búsqueda de soluciones para preguntas cotidianas y complejas con la ayuda de nuestra comunidad. Nuestra plataforma ofrece una experiencia continua para encontrar respuestas fiables de una red de profesionales experimentados. Explora miles de preguntas y respuestas proporcionadas por una comunidad de expertos en nuestra plataforma amigable.
Sagot :
[tex] \sqrt{2x+3} + \sqrt{x-2} =4[/tex]
1) Determinar condiciones de existencia de la raiz
2x + 3 > 0
2x > - 3
x > - 3/2
x - 2 > 0
x > 2 x > 2
2)
[tex] \sqrt{2x+3} =4- \sqrt{x-2} [/tex]
3) elevando todo al cuadrado
[tex]2x-3=16-8 \sqrt{x-2} +x-2 \\ x-11=-8 \sqrt{x-2} [/tex]
elevando nuevamente al cuadrado
[tex] x^{2} -22x+121=64x-128 \\ x^{2} -86x+249=0[/tex]
4) Resolviendo la ecuación de segundo grado
x1 = 3
x2 = 83 x = 3
√(2x + 3) +
√(x-2) = 4 elevamos los dos miembros al cuadrado
[√(2x + 3) + √(x-2)]² = 4²
[√(2x + 3) + √(x-2)]² = 4² resolvemos el trinomio cuadrado perfecto
[√(2x + 3)]² + 2[√(2x + 3)* √(x-2)] + [√(x-2)]² = 16
(2x + 3) + 2 [√(2x² - 4x + 3x - 6) ] + (x-2) = 16 sacamos las raíces
(2x + 3) + 2 [√(2x² - x - 6) ] + (x-2) = 16
3x + 1 + 2 [√(2x² - x - 6) ] = 16 juntamos las x
2 [√(2x² - x - 6) ] = 16 – 3x – 1
[√(2x² - x - 6) ] = (15 – 3x) /2 pasamos el 2 dividiendo
(2x² - x - 6) = [15/2 – 3x/2]² pasamos la raíz como potencia
2x² - x – 6 = 225/4 – 2. 15/2.3x/2 + 9x²/4
2x² - x – 6 = 225/4 – 45x/2 + 9x²/4
2x² - 9x²/4 – x + 45x/2 – 6 – 225/4 = 0
-1x²/4 + 43x/2 – 249/4 = 0 resolviendo la ecuación
-b +- √ b² - 4ac donde a = -1/4 b = 43/2 c= -249/4
2a
- 43/2 +- √1849/4 - 4(-1/4)(-249/4)
2(-1/4)
- 43/2 +- √400
-1/2
- 43/2 +- 20
-1/2
x1 = (-43/2 + 20) : -1 /2 --> x1 = -3/2 : -1/2 --> x1= 3
x2 = (-43/2 - 20) : -1/2 --> x2 = -83/2 : -1/2 --> x2 = 83
El resultado válido es el 3 porque si reemplazamos el 83 nos da un numero negativo en la segunda raíz, y no es posible, entonces
x = 3
Espero que te sirva, salu2!!!!
[√(2x + 3) + √(x-2)]² = 4²
[√(2x + 3) + √(x-2)]² = 4² resolvemos el trinomio cuadrado perfecto
[√(2x + 3)]² + 2[√(2x + 3)* √(x-2)] + [√(x-2)]² = 16
(2x + 3) + 2 [√(2x² - 4x + 3x - 6) ] + (x-2) = 16 sacamos las raíces
(2x + 3) + 2 [√(2x² - x - 6) ] + (x-2) = 16
3x + 1 + 2 [√(2x² - x - 6) ] = 16 juntamos las x
2 [√(2x² - x - 6) ] = 16 – 3x – 1
[√(2x² - x - 6) ] = (15 – 3x) /2 pasamos el 2 dividiendo
(2x² - x - 6) = [15/2 – 3x/2]² pasamos la raíz como potencia
2x² - x – 6 = 225/4 – 2. 15/2.3x/2 + 9x²/4
2x² - x – 6 = 225/4 – 45x/2 + 9x²/4
2x² - 9x²/4 – x + 45x/2 – 6 – 225/4 = 0
-1x²/4 + 43x/2 – 249/4 = 0 resolviendo la ecuación
-b +- √ b² - 4ac donde a = -1/4 b = 43/2 c= -249/4
2a
- 43/2 +- √1849/4 - 4(-1/4)(-249/4)
2(-1/4)
- 43/2 +- √400
-1/2
- 43/2 +- 20
-1/2
x1 = (-43/2 + 20) : -1 /2 --> x1 = -3/2 : -1/2 --> x1= 3
x2 = (-43/2 - 20) : -1/2 --> x2 = -83/2 : -1/2 --> x2 = 83
El resultado válido es el 3 porque si reemplazamos el 83 nos da un numero negativo en la segunda raíz, y no es posible, entonces
x = 3
Espero que te sirva, salu2!!!!
Gracias por pasar por aquí. Nos esforzamos por proporcionar las mejores respuestas para todas tus preguntas. Hasta la próxima. Gracias por pasar por aquí. Nos esforzamos por proporcionar las mejores respuestas para todas tus preguntas. Hasta la próxima. Nos enorgullece proporcionar respuestas en Revelroom.ca. Vuelve a visitarnos para obtener más información.