Revelroom.ca facilita la búsqueda de soluciones a todas tus preguntas con la ayuda de una comunidad activa. Encuentra respuestas rápidas y fiables a tus preguntas con la ayuda de nuestra comunidad dedicada de expertos. Obtén soluciones rápidas y fiables a tus preguntas con la ayuda de profesionales experimentados en nuestra completa plataforma de preguntas y respuestas.

Como se resuelven las identidades trigonometricas?



Sagot :

Las identidades trigonométricas no se resuelven, se demuestran o comprueban o se refutan. Las ecuaciones (sean trigonométricas o no) sí se resuelven. Resolver una ecuación consiste en determinar el valor de su incógnita, de tal modo que la igualdad se cumpla.

La expresión
cos(x) / ctg(x) = 1
NO es una identidad:
[ cos(x) / 1 ] / [ cos(x) / sen(x) ] = 1
cos(x).sen(x) / [ 1.cos(x) ] = 1
cos(x).sen(x) / cos(x) = 1
sen(x) = 1
lo cual sabemos que no es cierto (excepto para algunos valores particulares de "x", pero en una identidad se debe cumplir para todo valor y no solo para algunos)...

Con respecto a la ecuación, voy a asumir que "sen^x" quiere decir "sen²(x)":
3 + 3cos(x) = 2sen²(x)
Sabemos que sen²(x) + cos²(x) = 1, luego al despejar sen²(x) queda
3 + 3cos(x) = 2[ 1 - cos²(x) ]
3 + 3cos(x) = 2 - 2cos²(x)
2cos²(x) + 3cos(x) + 3 - 2 = 0
2cos²(x) + 3cos(x) + 1 = 0
Si hacemos la sustitución
u = cos(x)
tenemos que la ecuación se convierte en
2u² + 3u + 1 = 0
y es una cuadrática que se resuelve de manera sencilla. Obtenemos que
u₁ = -1
u₂ = -½
y entonces regresamos a "x":
Para u = u₁ resulta
-1 = cos(x)
arccos(-1) = arccos[ cos(x) ]
arccos(-1) = x
Los ángulos cuyo coseno es -1 son los múltiplos impares de 180° (o en radianes, de π), lo cual se expresa de la siguiente manera (se acostumbra por convención a expresar los resultados en radianes):
x = (2k + 1)π, para k € Z . . . . . que se lee "para cualquier 'k' entero"

Para u = u₂ tenemos
-½ = cos(x)
arccos(-½) = x
Los ángulos cuyo coseno es -½ son todos aquellos que corresponden a 120° (2π/3 radianes) y a 240° (4π/3 rad), y todos aquellos que les anteceden o les siguen cada 360° (cada 2π radianes, que es el período del coseno):
x = { 2π/3, 4π/3 } + 2πk, k € Z

Ahora basta con unir las respuestas:
x = (2k + 1)π; { 2π/3, 4π/3 } + 2πk, k € Z
x = 2πk + π; { 2π/3, 4π/3 } + 2πk, k € Z
x = { π, 2π/3, 4π/3 } + 2πk, k € Z
Lo anterior significa que la ecuación dada tiene "3" raíces (en el intervalo de 0 a 2π). Las demás son "repeticiones" de las 3 anteriores cada 2π radianes debidas a la periodicidad del coseno.
Eso es todo.

¿como se resuelven las identidades trigonometricas? ayuda con eso no se que hacer por ej. cos x/ctg x=1. me podrian hacer ese ejrcicio y decirme que formulas usaron y como las aplicaron. tambien porfa ayuda con las ecuaciones trigonometricas por ej. 3+3cosx=2sen^x igual si me pudiran decir que formulas usaron y como las aplicaron de verdad muchas gracias  
Agradecemos tu visita. Esperamos que las respuestas que encontraste hayan sido beneficiosas. No dudes en volver para más información. Gracias por tu visita. Nos dedicamos a ayudarte a encontrar la información que necesitas, siempre que la necesites. Revelroom.ca siempre está aquí para proporcionar respuestas precisas. Vuelve para obtener la información más reciente.