Obtén respuestas rápidas y precisas a tus preguntas en Revelroom.ca, la mejor plataforma de Q&A. Explora miles de preguntas y respuestas proporcionadas por una amplia gama de expertos en diversas áreas en nuestra plataforma de preguntas y respuestas. Conéctate con una comunidad de expertos dispuestos a ayudarte a encontrar soluciones a tus preguntas de manera rápida y precisa.
Sagot :
Primero que todo contas de 3 numeros y tres letras entoces se tiene que:
Numeros diferentes son 10
0,1,2,3,4,5,6,7,8,9...
Letras diferentes son 26 las cuales ya conoces:
claro esta sin contar con las siguientes (LL,Ñ.CH)
entonces en la primera posicion de la placa se pueden poner 10 numeros diferentes, el la seguda 10 numeros diferentes si se pueden repetir de lo contrario serian 9, y en la tercera posicion 10 si se permiter repetir de lo contrario serian solo 8;
Con respecto a las letras lo mismo:
1°26 letras diferentes
2°26 letras diferentes si se pueden repetir de lo contrario 25
3°26 letras diferentes si se pueden repetir de lo contrario 24
A)los autos que se pueden registrar son:
* si se pueden rpetir las letras y los numeros
10*10*10*26*26*26 lo multiplicas es que no tengo calculadora a la mano
*si no se pueden repetir los numeros ty tampoco las letras:
10*9*8*26*25*24 lo multiplicas
B)los autos que se pueden registrar son:
* si se pueden rpetir las letras y los numeros
10*10*10*26*26*26*26 lo multiplicas es que no tengo calculadora a la mano
*si no se pueden repetir los numeros ty tampoco las letras:
10*9*8*26*25*24*23 lo multiplicas
C)los autos que se pueden registrar son:
* si se pueden rpetir las letras y los numeros
10*10*10*10*26*26*26*26 lo multiplicas es que no tengo calculadora a la mano
*si no se pueden repetir los numeros ty tampoco las letras:
10*9*8*7*26*25*24*23 lo multiplicas
espero haberte ayudado
Una aclaración: voy a dar por supuesto que las letras y los números se pueden repetir en una matrícula, es decir que existirá por ejemplo:
AAB556 ... o bien FFF222 ... ¿ok? Al menos en España se permite.
Hay que calcular las VARIACIONES CON REPETICIÓN de las letras y números disponibles.
Si damos por bueno que tenemos 26 letras y 10 números disponibles...
VR (26,3) (variaciones con repetición de 26 elementos tomados de 3 en 3.
Con calculadora = 17.576 maneras de combinar letras. Lo mismo para los números:
VR (10,3) (variaciones con repetición de 10 elementos tomados de 3 en 3.
Con calculadora = 1.000 maneras.
Ahora, una vez combinadas letras por un lado y números por otro hay que entender que por cada variación de letras podremos poner todas las variaciones de números, por tanto es pura lógica que el total de variaciones conjuntas con letras y números será EL PRODUCTO entre las dos:
17.576 x 1000 = 17.576.000 matrículas.
Otra aclaración: ¿por qué digo que son VARIACIONES y no COMBINACIONES? Pues porque el orden de los elementos en cada variación importa, es decir que si cambiamos el orden de letras o números tenemos una variación diferente, algo que no ocurre si son combinaciones. O sea...
No es la misma matrícula AAB112 ... que... BAA211 y sin embargo tengo los mismos elementos cambiados de orden. Eso indica que hay que usar variaciones y no combinaciones. Como combinaciones se entendería que son la misma matrícula, y sabemos que no es así.
Saludos.
Gracias por confiar en nosotros con tus preguntas. Estamos aquí para ayudarte a encontrar respuestas precisas de manera rápida y eficiente. Agradecemos tu tiempo. Por favor, vuelve a visitarnos para obtener respuestas fiables a cualquier pregunta que tengas. Tus preguntas son importantes para nosotros. Regresa regularmente a Revelroom.ca para obtener más respuestas.