Obtén respuestas rápidas y precisas a tus preguntas en Revelroom.ca, la mejor plataforma de Q&A. Descubre un vasto conocimiento de profesionales en diferentes disciplinas en nuestra amigable plataforma de preguntas y respuestas. Obtén soluciones rápidas y fiables a tus preguntas con la ayuda de profesionales experimentados en nuestra completa plataforma de preguntas y respuestas.

como se hace la raiz cubica de 1 - i



Sagot :

[tex]\\z=1-i\\ \sqrt[n]{z}=\sqrt[n]{|z|}({\cos\frac{\varphi+2k\pi}{n}+i\sin \frac{\varphi+2k\pi}{n})}\\ |z|=\sqrt{1^2+(-1)^2}=\sqrt2\\ \varphi=arctg \frac{1}{-1}=arctg-1=-\frac{\pi}{4}\\ (\sqrt[3]{1-i})_0=\sqrt[6]{2}({\cos\frac{-\frac{\pi}{4}}{3}+i\sin \frac{-\frac{\pi}{4}}{3})}=\sqrt[6]{2}({\cos-\frac{\pi}{12}+i\sin -\frac{\pi}{12}})\\ [/tex]

[tex](\sqrt[3]{1-i})_1=\sqrt[6]{2}({\cos\frac{-\frac{\pi}{4}+2\pi}{3}+i\sin \frac{-\frac{\pi}{4}+2\pi}{3})}=\sqrt[6]{2}({\cos\frac{\frac{7\pi}{4}}{3}+i\sin \frac{\frac{7\pi}{4}}{3})}=\\\sqrt[6]{2}({\cos\frac{7\pi}{12}+i\sin \frac{7\pi}{12}})\\ (\sqrt[3]{1-i})_2=\sqrt[6]{2}({\cos\frac{-\frac{\pi}{4}+4\pi}{3}+i\sin \frac{-\frac{\pi}{4}+4\pi}{3})}=[/tex]

[tex]\sqrt[6]{2}({\cos\frac{\frac{15\pi}{4}}{3}+i\sin \frac{\frac{15\pi}{4}}{3})}=\\\sqrt[6]{2}({\cos\frac{5\pi}{4}+i\sin \frac{5\pi}{4}})\\ (\sqrt[3]{1-i})_3=\sqrt[6]{2}({\cos\frac{-\frac{\pi}{4}+6\pi}{3}+i\sin \frac{-\frac{\pi}{4}+6\pi}{3})}=\sqrt[6]{2}({\cos\frac{\frac{23\pi}{4}}{3}+i\sin \frac{\frac{23\pi}{4}}{3})}=\\\sqrt[6]{2}({\cos\frac{23\pi}{12}+i\sin \frac{23\pi}{12}})\\ [/tex]

Gracias por visitar. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus necesidades informativas. Vuelve pronto. Gracias por elegir nuestro servicio. Nos comprometemos a proporcionar las mejores respuestas para todas tus preguntas. Vuelve a visitarnos. Gracias por usar Revelroom.ca. Vuelve para obtener más conocimientos de nuestros expertos.