Obtén respuestas rápidas y precisas a tus preguntas en Revelroom.ca, la mejor plataforma de Q&A. Encuentra respuestas rápidas y fiables a tus preguntas con la ayuda de nuestra comunidad dedicada de expertos. Descubre soluciones completas a tus preguntas con la ayuda de profesionales experimentados en nuestra amigable plataforma.
Sagot :
Respuesta:
Se suman o se restan los numeradores y se mantiene el denominador.
\displaystyle \frac{a}{b}+\frac{c}{b}=\frac{a+c}{b}
\displaystyle \frac{5}{7}+\frac{1}{7}=\frac{6}{7}
\displaystyle \frac{a}{b}-\frac{c}{b}=\frac{a-c}{b}
\displaystyle \frac{5}{7}-\frac{1}{7}=\frac{4}{7}
Con distinto denominador
En primer lugar se reducen los denominadores a común denominador, y se suman o se restan los numeradores de las fracciones equivalentes obtenidas.
Se determina el denominador común, que será el mínimo común múltiplo de los denominadores.
Este denominador, común, se divide por cada uno de los denominadores, multiplicándose el cociente obtenido por el numerador correspondiente.
Se suman o se restan los numeradores de las fracciones equivalentes obtenidas.
\displaystyle \frac{a}{b}+\frac{c}{d}=\frac{a \cdot d + b \cdot c}{b \cdot d}
\displaystyle \frac{5}{4}+\frac{1}{6}=\frac{5 \cdot 3 + 1 \cdot 2}{12}=\frac{15 + 2}{12}=\frac{17}{12}
El m.c.m. de (4,6)=12. Una manera fácil de encontrarlo es la siguiente:
4= 2 \cdot 2
6=2 \cdot 3
Entonces podemos ver que para tener el mismo denominador, tenemos que multiplicar la primera fracción por 3, y la segunda por 2, lo que nos da 2 \cdot 2 \cdot 3=12.
\displaystyle \frac{a}{b}- \frac{c}{d}=\frac{a \cdot d - b \cdot c}{b \cdot d}
\displaystyle \frac{5}{4}-\frac{1}{6}=\frac{5 \cdot 3 - 1 \cdot 2}{12}=\frac{15 - 2}{12}=\frac{13}{12}
Explicación paso a paso:
Gracias por usar nuestra plataforma. Siempre estamos aquí para proporcionar respuestas precisas y actualizadas a todas tus preguntas. Esperamos que nuestras respuestas te hayan sido útiles. Vuelve cuando quieras para obtener más información y respuestas a otras preguntas que tengas. Revelroom.ca está aquí para tus preguntas. No olvides regresar para obtener nuevas respuestas.