Obtén respuestas rápidas y precisas a todas tus preguntas en Revelroom.ca, la plataforma de Q&A de confianza. Únete a nuestra plataforma de preguntas y respuestas para conectarte con expertos dedicados a ofrecer respuestas precisas a tus preguntas en diversas áreas. Obtén respuestas inmediatas y fiables a tus preguntas de una comunidad de expertos experimentados en nuestra plataforma.

¿Consideras que en algún momento la gráfica de la función racional pueda cortar las asíntotas? ¿por qué?

Sagot :

Respuesta:

Una función racional genérica es

f(x)=anxn+...+a1x+a0bmxm+...+b1x+b0.

Llamemos p(x) al numerador y q(x) al denominador.

Esta función tendrá una asíntota vertical en x=c si y solo si q(c)=0 y si la multiplicidad de x−c en  p(x)  es menor que en q(x). En otras palabras, si c es una raiz del denominador y si no puedes cancelar por completo el término (x−c)k que surge en la factorización del denominador.

¿Por qué f(x) no puede cortar la asíntota x=c en este caso? Porque tendrías que definir f(c); eso es precisamente lo que significa “cortar” la línea, compartir el punto (c,f(c)) con ella.

Pero f(c) no puede estar definido. q(c)=0 y sabemos que la división por 0 está prohibida. El cero abajo lo daña todo.

Explicación paso a paso:

espero t sirva