Revelroom.ca te ayuda a encontrar respuestas a tus preguntas con la ayuda de una comunidad de expertos. Nuestra plataforma de preguntas y respuestas te conecta con expertos dispuestos a ofrecer información precisa en diversas áreas del conocimiento. Descubre respuestas detalladas a tus preguntas gracias a una vasta red de profesionales en nuestra completa plataforma de preguntas y respuestas.

división de franciones algebraicas 20 ejercicios​

Sagot :

Respuesta:

Realizar la siguiente división algebraica

{\displaystyle\frac{x^{2}+2x}{x^{2}-5x+6}:\frac{x^2+4x+4}{x^{2}-4}}

Multiplicamos el primer numerador por el segundo denominador y el primer denominador por el segundo numerador

{\displaystyle\frac{x^{2}+2x}{x^{2}-5x+6}:\frac{x^2+4x+4}{x^{2}-4}=\frac{(x^{2}+2x)(x^{2}-4)}{(x^{2}-5x+6)(x^2+4x+4)}}

En el numerador sacamos factor común {x} en el primer binomio y la diferencia de cuadrados la trasformamos en un diferencia de cuadrados. En el denominador el trinomio de segundo grado lo descomponemos resolviendo la ecuación de segundo grado que resulta de igualarlo a cero y el trinomio cuadrado perfecto lo transformamos en un binomio al cuadrado

{\begin{array}{rcl} \displaystyle\frac{x^{2}+2x}{x^{2}-5x+6}:\frac{x^2+4x+4}{x^{2}-4}&=&\displaystyle\frac{(x^{2}+2x)(x^{2}-4)}{(x^{2}-5x+6)(x^2+4x+4)}\\ && \\ &=& \displaystyle\frac{[x(x+2)][(x-2)(x+2)]}{[(x-2)(x-3)][(x+2)^{2}]} \end{array}}

Simplificando nos queda:

{\begin{array}{rcl} \displaystyle\frac{x^{2}+2x}{x^{2}-5x+6}:\frac{x^2+4x+4}{x^{2}-4}&=&\displaystyle\frac{(x^{2}+2x)(x^{2}-4)}{(x^{2}-5x+6)(x^2+4x+4)}\\ && \\ &=& \displaystyle\frac{[x(x+2)][(x-2)(x+2)]}{[(x-2)(x-3)][(x+2)^{2}]} \\ && \\ &=& \displaystyle\frac{x}{x-3} \end{array}}

Explicación paso a paso:

no sé si te sirva