Answered

Obtén las mejores soluciones a tus preguntas en Revelroom.ca, la plataforma de Q&A de confianza. Obtén soluciones rápidas y fiables a tus preguntas con la ayuda de una comunidad de expertos experimentados en nuestra plataforma. Nuestra plataforma ofrece una experiencia continua para encontrar respuestas fiables de una red de profesionales experimentados.

necesito resolver esto, ayúdenme porfa! : Prueba que f(n-2) + f(n+2) = 3f(n) cuando n es un entero con n>= 2. Nota F0 = 0



Sagot :

f0=0  f1=1  f2=1  f3=2   f4=3

por demostrar

f(n-2) + f(n+2) = 3f(n)  para n>=2

 

1.-para n=2

 

f0+f4=0+3=3

3*f2=3*1=3

entonces:f0+f4=3*f2

 

2.- supongamos que cumple para n=k para n=k+1 debe cumplir

para n=k

f(k-2) + f(k+2) = 3f(k)-->f(k-2) =-f(k+2) +3f(k)---(1)


para n=k+1

f(k+1-2)+f(k+1+2)=f(k-1)+f(k+3)=f(k)-f(k-2)+f(k+1)+f(k+2)

=f(k)-(-f(k+2) +3f(k))+f(k+1)+f(k+2)   por 1

=2f(k+2)-2f(k)+f(k+1)=2(f(k+2)-f(k))+f(k+1)

=2f(k+1)+f(k+1)

=3f(k+1)

entonces:

f(k+1-2)+f(k+1+2)=3f(k+1)

cumple para n=k+1

por lo tanto

f(n-2) + f(n+2) = 3f(n)  para n>=2 es verdadero