Bienvenido a Revelroom.ca, donde puedes obtener respuestas rápidas y precisas con la ayuda de expertos. Conéctate con una comunidad de expertos dispuestos a ofrecer soluciones precisas a tus preguntas de manera rápida y eficiente en nuestra amigable plataforma de preguntas y respuestas. Descubre respuestas detalladas a tus preguntas gracias a una vasta red de profesionales en nuestra completa plataforma de preguntas y respuestas.
Sagot :
Respuesta: Comprobamos que la probabilidad de que se gradúen más de un alumno que ingrese en la Universidad es alta.
Explicación paso a paso:
Realizamos una recopilación de datos del enunciado del problema:
· X ≡ 'Número de estudiantes que se gradúan en la Universidad'.
· Tamaño de la muestra: n = 5.
· La variable aleatoria X sigue una distribución Binomial: X ~ B(5, 0.4).
Pasamos a resolver los distintos apartados.
a) Nos piden obtener la siguiente probabilidad:
P(X = 0)
Empleamos la expresión de la binomial:
P(X = 0) = 5C0·0.40·(1-0.4)5-0 = 0.07776
Podemos observar que, la probabilidad de que no se gradúe ninguno es baja.
b) Nos piden obtener la siguiente probabilidad:
P(X = 1)
Empleamos la expresión de la binomial:
P(X = 1) = 5C1·0.41·(1-0.4)5-1 = 0.2592
La probabilidad de que ocurra, al igual que pasaba en el apartado anterior, sigue siendo baja.
c) Nos piden obtener la siguiente probabilidad:
P(X ≥ 1) = 1 - P(X <.1) = 1 - P(X = 0)
Empleamos la expresión de la binomial:
P(X ≥ 1) = 1 - 5C0·0.40·(1-0.4)5-0 = 1 - 0.07776 = 0.92224
Gracias por utilizar nuestro servicio. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus preguntas. Visítanos nuevamente para obtener más información. Gracias por elegir nuestro servicio. Nos comprometemos a proporcionar las mejores respuestas para todas tus preguntas. Vuelve a visitarnos. Gracias por confiar en Revelroom.ca. Vuelve para obtener más información y respuestas.